By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    football analytics
    The Role of Data Analytics in Football Performance
    9 Min Read
    data Analytics instagram stories
    Data Analytics Helps Marketers Make the Most of Instagram Stories
    15 Min Read
    analyst,women,looking,at,kpi,data,on,computer,screen
    What to Know Before Recruiting an Analyst to Handle Company Data
    6 Min Read
    AI analytics
    AI-Based Analytics Are Changing the Future of Credit Cards
    6 Min Read
    data overload showing data analytics
    How Does Next-Gen SIEM Prevent Data Overload For Security Analysts?
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Are New SEC Rules Enough to Prevent Another Flash Crash?
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Risk Management > Are New SEC Rules Enough to Prevent Another Flash Crash?
AnalyticsR Programming LanguageRisk Management

Are New SEC Rules Enough to Prevent Another Flash Crash?

DavidMSmith
Last updated: 2011/09/22 at 2:56 PM
DavidMSmith
5 Min Read
SHARE

At 2:42PM on March 10 2010, without warning, the Dow Jones Industrial Index plunged more than 1000 points in just 5 minutes. It remains the biggest one-day decline in this stock market index in history. On an intra-day basis, anyway: by the end of the day, the market had regained 600 points of the drop.

At 2:42PM on March 10 2010, without warning, the Dow Jones Industrial Index plunged more than 1000 points in just 5 minutes. It remains the biggest one-day decline in this stock market index in history. On an intra-day basis, anyway: by the end of the day, the market had regained 600 points of the drop.

Flashcrash

More Read

football analytics

The Role of Data Analytics in Football Performance

Data Analytics Helps Marketers Make the Most of Instagram Stories
What to Know Before Recruiting an Analyst to Handle Company Data
AI-Based Analytics Are Changing the Future of Credit Cards
Tips to Protect Office 365 Systems from Data Breaches

At the time, the cause of the 2010 Flash Crash (as it came to be known) was a mystery, but its effects were immediately apparent: besides spooking an already unstable market, millions of erroneous trades had to be unwound (at one point, shares in Accenture were selling for $0.01) and many investors lost millions on trades that were deemed legitimate despite the crazy market activity.

Today, the cause is still not entirely clear. A 2010 SEC report suggests automated high-frequency trading systems (aka program trading, algo trading) may have been a contributing factor: today, more than 50% of trades are generated not by humans, but by computer algorithms following the microscopic movements in the market and responding with sub-millisecond speeds. (Kevin Slavin notes in this must-see TED talk that some program trading firms have set up shop as close to the internet backbone as possible to further reduce the response time of these algorithms.) Others have suggested that an unusually large trade from one firm may have set off a chain reaction amongst these trading algorithms, but later academic studies have offered contrary opinions. Nonetheless, such a spontaneous market disruption is definitely something the SEC would prefer to avoid.

In response to the crash, the SEC instituted new “circuit breaker” rules: now, trading is paused on individual stocks whose prices suddenly move 10 percent or more in a five-minute period. But it appears that the SEC never backtested the change: no-one ever applied these new rules to historical trades (say, around the time of the Flash Crash) to see whether these circuit breakers would, indeed, prevent a crash as intended. So three researchers — Casey King, Michael Kane and Richard Holowczak — used the R language to apply the new circuit breaker rules to more than 15 trillion trades (note though, that’s just 2 years of intra-day data) to see what would have happened. Their conclusion, as presented in a paper at the R/Finance Conference in 2011 and reported in Barrons, found that “circuit breakers would not have addressed significant sectors of the market and would have been insufficient in stemming broad and sudden loss”.

Doing this kind of backtesting analysis isn’t easy — intra-day trade data is huge. Kane et al relied on Revolution Analytics’ open-source foreach library in R to divide-and-conquer the problem and distribute the computations across a grid, yet as reported in Barrons:

Analyzing three years of trading entails an enormous amount of processing. From 2008 to 2010, U.S.-listed stocks recorded over 24 billion separate trades. Applying the limit rules to every second of that trading record required 8,035 hours of computer processing across 60 processors in parallel.

When you’re dealing with Big Data like this, high-performance computing allows for a more in-depth analysis. Kane and King have returned to the problem once again, this time with the processing power of an IBM Netezza iClass appliance (with about 200 processors) integrated with Revolution R Enterprise at their disposal. In a webinar on Wednesday September 28 in partnership with Revolution Analytics and IBM Netezza, they’ll report on a new analysis of the effectiveness of the latest SEC circuit-breaker rules, and address the question: will they be enough to prevent a reoccurence of the 2010 Flash Crash? To learn more, register for the free webinar at the link below.

Revolution Analytics Webinars: Comparing Performance of Distributed Computing Platforms Using Applications in Backtesting FINRA’s Limit Up/Down Rules

DavidMSmith September 22, 2011
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Shutterstock Licensed Photo - 1051059293 | Rawpixel.com
QR Codes Leverage the Benefits of Big Data in Education
Big Data
football analytics
The Role of Data Analytics in Football Performance
Analytics Big Data Exclusive
smart home data
7 Mind-Blowing Ways Smart Homes Use Data to Save Your Money
Big Data
ai low code frameworks
AI Can Help Accelerate Development with Low-Code Frameworks
Artificial Intelligence

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

football analytics
AnalyticsBig DataExclusive

The Role of Data Analytics in Football Performance

9 Min Read
data Analytics instagram stories
Analytics

Data Analytics Helps Marketers Make the Most of Instagram Stories

15 Min Read
analyst,women,looking,at,kpi,data,on,computer,screen
Analytics

What to Know Before Recruiting an Analyst to Handle Company Data

6 Min Read
AI analytics
AnalyticsArtificial IntelligenceExclusive

AI-Based Analytics Are Changing the Future of Credit Cards

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?