Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Data versus Expertise Dilemma
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Decision Management > Data versus Expertise Dilemma
AnalyticsBusiness IntelligenceDecision ManagementKnowledge Management

Data versus Expertise Dilemma

CMatignon
CMatignon
5 Min Read
SHARE

balanceIn the decade (or two) I have spent in Decision Management, and Artificial Intelligence at large, I have seen first-hand the war raging between knowledge engineers and data scientists.  Each defending its approach to supporting ultimately better decisions.  So what is more valuable

balanceIn the decade (or two) I have spent in Decision Management, and Artificial Intelligence at large, I have seen first-hand the war raging between knowledge engineers and data scientists.  Each defending its approach to supporting ultimately better decisions.  So what is more valuable?  Insight from data?  Or knowledge from the expert?

Mike Loukides wrote a fantastic article called “The unreasonable necessity of subject experts“ on the O’Reilly radar, that illustrates this point very well and provides a clear picture as to why and how we would want both.

Data knows stuff that experts don’t

In the world of uncertainty that surrounds us, experts can’t compete with the sophisticated algorithms we have refined over the years.  Their computational capabilities goes way above and beyond the ability of the human brain.  Algorithms can crunch data in relatively little time and uncover correlations that did not suspect.

Adding to Mike’s numerous example, the typical diaper shopping use case comes to mind.  Retail transaction analysis uncovered that buyers of diapers at night were very likely to buy beer as well.  The rationale is that husbands help the new mom with shopping, when diapers run low at the most inconvenient time of the day: inevitably at night.  The new dad wandering in the grocery store at night ends up getting “his” own supplies: beer.

Mike warns against the pitfalls of data preparation.  A hidden bias can surface in a big way in data samples, whether it over-emphasizes some trends or cleans up traces of unwanted behavior.  If your data is not clean and unbiased, value of the data insight becomes doubtful.  Skilled data scientists work hard to remove as much bias as they can from the data sample they work on, uncovering valuable correlations.

 Data knows too much?

When algorithms find expected correlations, like Mike’s example of pregnant women being interested in baby products, analytics can validate intuition and confirm fact we knew.

When algorithms find unexpected correlations, things become interesting!  With insight that is “not so obvious”, you are at an advantage to market more targeted messages.  Marketing campaigns can yield much better results than “shooting darts in the dark”.

Mike raises an important set of issues: Can we trust the correlation?  How to interpret the correlation?

Mike’s article includes many more examples.  There are tons of football statistics that we smile about during the Super Bowl.  Business Insider posted some even more incredible examples such as:

  • People who dislike licorice are more likely to understand HTML
  • People who like scooped ice cream are more likely to enjoy roller coasters than those that prefer soft serve ice cream
  • People who have never ridden a motorcycle are less likely to be multilingual
  • People who can’t type without looking at the keyboard are more likely to prefer thin-crust pizza to deep-dish

There may be some interesting tidbit of insight in there that you could leverage.  but unless you *understand* the correlation, you may be misled by your data and make some premature conclusions.

Expert shines at understanding

Mike makes a compelling argument that the role of the expert is to interpret the data insight and sort through the red herrings.

This illustrates very well what we have seen in the Decision Management industry with the increased interplay between the “factual” insight and the “logic” that leverages that insight.  Capturing expert-driven business rules is a good thing.  Extracting data insight is a good thing.  But the real value is in combining them.  I think the interplay is much more intimate than purely throwing the insight on the other side of the fence.  You need to ask the right questions as you are building your decisioning logic, and use the available data samples to infer, validate or refine your assumptions.

As Mike concludes, the value resides in the conversation that is raised by experts on top of data.  Being able to bring those to light, and enable further conversations, is how we will be able to understand and improve our systems.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

The latest ACM SIGKDD Explorations Newsletter is out. Focus on open source analytics and PMML

3 Min Read

Hadoop Summit and Hortonworks Promise to Make Big Data More Engaging

13 Min Read
artificial intelligence
Artificial Intelligence

AI Developments Which Will Shape Our Future

6 Min Read
Image
AnalyticsBig DataBusiness IntelligenceData MiningDecision ManagementITMarketingPredictive AnalyticsSocial DataUnstructured DataWorkforce Data

Big Data Is Nothing Without Its Little Brother

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?