By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data Analytics instagram stories
    Data Analytics Helps Marketers Make the Most of Instagram Stories
    15 Min Read
    analyst,women,looking,at,kpi,data,on,computer,screen
    What to Know Before Recruiting an Analyst to Handle Company Data
    6 Min Read
    AI analytics
    AI-Based Analytics Are Changing the Future of Credit Cards
    6 Min Read
    data overload showing data analytics
    How Does Next-Gen SIEM Prevent Data Overload For Security Analysts?
    8 Min Read
    hire a marketing agency with a background in data analytics
    5 Reasons to Hire a Marketing Agency that Knows Data Analytics
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Data Scientists Should Be the New Factory Workers
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Data Scientists Should Be the New Factory Workers
Best PracticesData MiningModelingPredictive Analytics

Data Scientists Should Be the New Factory Workers

tkorte
Last updated: 2013/10/01 at 8:00 AM
tkorte
5 Min Read
Image
SHARE

ImageThe factory environment is a data scientist’s paradise: both highly multivariate and relatively quantifiable.  And the increased use of large-scale data analysis in the manufacturing sector could mean good news—not just for recent graduates in statistics and computer science, but also for the U.S. economy.

ImageThe factory environment is a data scientist’s paradise: both highly multivariate and relatively quantifiable.  And the increased use of large-scale data analysis in the manufacturing sector could mean good news—not just for recent graduates in statistics and computer science, but also for the U.S. economy.

After China overtook the United States to become the world’s largest manufacturer in 2010, some U.S. commentators worried that the trend toward building factories in countries with very low labor costs and more flexible supply chains was inevitable. But data-driven manufacturing, sometimes known as “smart manufacturing,” could provide a counterweight. Increased automation and more sophisticated robotics, driven by data science and fed with sufficient volumes of high-quality sensor data, could increase productivity dramatically and help regions with high labor costs stay competitive.

Automation and robotics are no longer solely engineering challenges; the increasing success of machine learning in applications such as computer vision, object manipulation and automated movement has made data science an increasingly relevant factor on the factory floor. Dedicated machine learning platforms for manufacturing have existed for several years, but such offerings remain relatively few in number and the full extent of the applications remains unexplored.

More Read

Data Ethics: Safeguarding Privacy and Ensuring Responsible Data Practices

Data Ethics: Safeguarding Privacy and Ensuring Responsible Data Practices

Tips to Protect Office 365 Systems from Data Breaches
Using Predictive Analytics to Get the Best Deals on Amazon
CASBs Help Cloud-Based Businesses Avoid Data Breaches
Predictive Analytics Helps New Dropshipping Businesses Thrive

The increased adoption of these technologies may not be so far in the future since data is increasingly common in manufacturing. In addition to keeping ordinary financial and inventory databases, a manufacturer might take sensor measurements of dozens or hundreds of environmental and process variables inside a factory. Defense manufacturing giant Raytheon, for example, measures how many times a screw has been turned at its new plant.

In addition to driving automation, all that data can then be used to predictively model equipment failure rates, streamline inventory management, identify energy-inefficient components and even optimize factory floor space, among many other applications. Intel has deployed predictive analytics to prioritize its inspections of silicon chips, saving the company $3 million in manufacturing costs in 2012. And the applications need not even be particularly exotic; ordinary business intelligence software can be optimized for manufacturers in the form of manufacturing execution systems (MES). According to a 2013 report by Gartner, the global market for MES has increased by 50 percent since 2005.

But the primary obstacle standing between the wealth of manufacturing data and future applications may not even be technology; rather, it is the lack of data sharing and interoperability within individual companies. A 2013 joint report from Rockwell Automation and the UCLA Office of Information Technology noted that, while many manufacturers today use sophisticated software to optimize “each specific stage or operation of a manufacturing process… each is an island of efficiency.” After efforts to improve data quality and completeness, a strong push for data interoperability among departments within individual manufacturers is the next step toward data-driven innovation.

Data-driven innovation offers a major opportunity for the U.S. manufacturing sector, but it needs to garner support in federal, state and local governments if it is to permeate the industry rapidly and thoroughly enough to outpace the burgeoning efforts of countries such as China, India and Brazil. This support could come in many forms, including the president’s proposed National Network for Manufacturing Innovation (NNMI) which promises to be a useful platform for supporting and incentivizing entrepreneurs to build “smart manufacturing” plants. Government support through the NNMI and other avenues will result in cheaper, safer, more environmentally friendly factories and could improve the United States’ position in the global manufacturing economy in the process.

tkorte October 1, 2013
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

smart home data
7 Mind-Blowing Ways Smart Homes Use Data to Save Your Money
Big Data
ai low code frameworks
AI Can Help Accelerate Development with Low-Code Frameworks
Artificial Intelligence
data Analytics instagram stories
Data Analytics Helps Marketers Make the Most of Instagram Stories
Analytics
data breaches
How Hospital Security Breaches Devastate Local Communities
Policy and Governance

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

Data Ethics: Safeguarding Privacy and Ensuring Responsible Data Practices
Best PracticesBig DataData CollectionData ManagementPrivacy

Data Ethics: Safeguarding Privacy and Ensuring Responsible Data Practices

7 Min Read
office 365 data protection
Risk Management

Tips to Protect Office 365 Systems from Data Breaches

9 Min Read
predictive analytics for amazon pricing
Predictive Analytics

Using Predictive Analytics to Get the Best Deals on Amazon

8 Min Read
CASB
Security

CASBs Help Cloud-Based Businesses Avoid Data Breaches

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?