By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    AI analytics
    AI-Based Analytics Are Changing the Future of Credit Cards
    6 Min Read
    data overload showing data analytics
    How Does Next-Gen SIEM Prevent Data Overload For Security Analysts?
    8 Min Read
    hire a marketing agency with a background in data analytics
    5 Reasons to Hire a Marketing Agency that Knows Data Analytics
    7 Min Read
    predictive analytics for amazon pricing
    Using Predictive Analytics to Get the Best Deals on Amazon
    8 Min Read
    data science anayst
    Growing Demand for Data Science & Data Analyst Roles
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Data Science shows maturity at 2012 Summit.
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Data Science shows maturity at 2012 Summit.
Data Mining

Data Science shows maturity at 2012 Summit.

DavidMSmith
Last updated: 2012/05/24 at 5:55 PM
DavidMSmith
3 Min Read
SHARE

As a discipline, Data Science is growing up fast. That’s my key takeaway from the 2012 Data Science Summit.

Data Science Summit 2012

As a discipline, Data Science is growing up fast. That’s my key takeaway from the 2012 Data Science Summit.

More Read

demographics big data in marketing

The Role of Data in Understanding Demographics for Effective Marketing

7 Ways Data Monetization is Changing the Information Technology Job Market
6 Reasons to Boost Data Security Plan in the Age of Big Data
How Big Data Is Transforming the Maritime Industry
Utilizing Data to Discover Shortcomings Within Your Business Model

Data Science Summit 2012

At the inaugural 2011 Data Science Summit (you can see some highlights in this recap video), the focus was on the Big Data part of Data Science: issues with streaming data, how to store big data, technology platforms, that kind of thing. This year’s summit was much more focused on the “Science” part of Data Science: applications of Big Data, and statistical issues related to the analysis of Big Data. A few examples:

  • Nate Silver (political forecaster for the NYT) talked not just about building models and making predictions, but also the importance of, in his words, “embracing uncertaintly”. A prediction often isn’t useful without an assessment of its uncertaintly (or risk). He gave this real-life example: a flood-level prediction of 49 feet doesn’t mean a city can rest easy because the levees are 51 feet high. The weather service failed to mention that there was a plus-or-minus 9 feet margin of error to that prediction, or about a 50-50 chance the city would be flooded. (It was.)
  • Michael Chui (author of the McKinsey Big Data report) said that schools should be teaching more Statistics, and less Calculus, so that graduates have a better grasp of issues like sampling and selection bias.
  • Michael Brown (CTO of ComScore) talked about the need to understand the impact of recall bias and outliers.
  • Jeremy Howard (Chief Data Scientist of Kaggle) warned of the dangers of observation bias inherent in “data exhaust”, and extolled the benefits of statistical experiments to distringuish between causality and correlation.
  • Tony Jebara (co-founder of Sense Networks) expressed the need for the focus of predictive analytics to graduate from mere accuracy to making models interpretable, and predictions actionable.
  • Hadley Wickham (R package author and educator) described the variety of application areas for Data Science, from cheesemakers to airport designers, and from sports teams to cruise lines. 

These are all important statistical issues, which until recently have had a back-seat to the technological and operational issues of data science. It’s great to see the practice maturing, and this new focus will lead to data applications which are not just more powerful, but more reliable and more impactful as well. Data Science has come of Statistical age.

TAGGED: big data
DavidMSmith May 24, 2012
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Data Ethics: Safeguarding Privacy and Ensuring Responsible Data Practices
Data Ethics: Safeguarding Privacy and Ensuring Responsible Data Practices
Best Practices Big Data Data Collection Data Management Privacy
data protection for SMEs
8 Crucial Tips to Help SMEs Guard Against Data Breaches
Data Management
How AI is Boosting the Customer Support Game
How AI is Boosting the Customer Support Game
Artificial Intelligence
AI analytics
AI-Based Analytics Are Changing the Future of Credit Cards
Analytics Artificial Intelligence Exclusive

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

demographics big data in marketing
Big Data

The Role of Data in Understanding Demographics for Effective Marketing

7 Min Read
data monetization
Big Data

7 Ways Data Monetization is Changing the Information Technology Job Market

6 Min Read
data security in big data age
Big Data

6 Reasons to Boost Data Security Plan in the Age of Big Data

7 Min Read
How Big Data Is Transforming the Maritime Industry
Big Data

How Big Data Is Transforming the Maritime Industry

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?