Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: What’s The Difference between Data Scientists and Rocket Scientists?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > What’s The Difference between Data Scientists and Rocket Scientists?
Analytics

What’s The Difference between Data Scientists and Rocket Scientists?

TalentAnalytics
TalentAnalytics
4 Min Read
SHARE

This post was written by Greta Roberts, CEO, Talent Analytics, Corp. on 18 July 2012. Comment below!

After attending several analytics conferences over the last month, I’m beginning to understand an important nuance about the community we call “analytics” worked by “analytics professionals” or “data scientists.”  It seems as if the defining boundary of our discipline is almost always that we data scientists apply ourselves to business, organizational, and market data.

This post was written by Greta Roberts, CEO, Talent Analytics, Corp. on 18 July 2012. Comment below!

After attending several analytics conferences over the last month, I’m beginning to understand an important nuance about the community we call “analytics” worked by “analytics professionals” or “data scientists.”  It seems as if the defining boundary of our discipline is almost always that we data scientists apply ourselves to business, organizational, and market data.

More Read

PAW: New Challenges for Developing Predictive Analytics Solutions
Building an Ironclad Business Case for Business Intelligence
How Big Data Has Impacted The Real Estate Industry
Combining Text Analytics with Voice-to-Text
Big Data Showcase: Advanced Analytics

The important nuance?  Businesses, organizations, and markets all involve interactions between people.  Always.

Several other domains use very similar computational techniques to look at purely physical things – the hard sciences and engineering.  As an example, astrophysicists or metallurgists may use the same statistical programs as data scientists, but their world is very different.  Their data does not involve humans.  For example, the electrical lifespan of a battery doesn’t vary with human sentiments, though sometimes it may seem that way.

Since a data scientist’s work is typically in the service of learning about, bringing value to, and bringing change to an organization, we have to deal with people.  It’s not about the size of our datasets – compare your data to Computational Fluid Dynamics data someday – but it’s that we are looking at these sometimes fickle, non-linear, yet often-predictable critters called employees or buyers or sellers.

Finance, in particular, is famous for “physics envy,” leading to very mathematical, yet sometimes fatally flawed models of market and ultimately human behavior.  In the Analytics business, no matter how many physics Ph.D.’s we hire, our analytics professionals often only get one pass at the data – we can’t repeat experiments as if we are Edison looking for a light bulb filament.

Just because our ultimate subject matter (people) maybe influenced by Madonna one decade and Lady Gaga the next, does not make them impossible to model, analyze, and even predict.  And since only people do the work and the buying, this analysis is very valuable with even small correlations.

Maybe this seems obvious, but I think it can sometimes be easy to fall into thinking about the “market” or “transactions” or “attrition” or “performance” in a more mechanistic way that forgets about the involvement of people making a Data Scientist’s work far more complicated than predicting the airflow over a wing.

The above nuance feels like an important one, to learn and to pass along as it highlights the unique, powerful and human side of our work.  This concept may be lost in the seeming trivia of scanning social media text, but in fact the closer to humanity we are, the closer we are to being Data Scientists.

Originally published by International Institute for Analytics.

Greta Roberts is a Faculty Member of the IIA and CEO of Talent Analytics, Corp. Follow her on twitter @GretaRoberts.

TAGGED:big dataData Scientistpredictive analytics
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive
data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

big data improved eCommerce
Big DataExclusive

6 Ways Big Data Can Improve eCommerce For Your Business

7 Min Read
big data and black hat seo
Big DataITSecurity

Big Data Makes Black Hat Hackers More Terrifying Than Ever

11 Min Read

Data Visualizations: The Tip of the Iceberg of Understanding

0 Min Read
big data cloud computing are future of robotics
Big DataCloud ComputingComputingExclusiveIT

Merging Big Data and Cloud Computing is the Future of Robotics

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?