Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
    data analytics for trademark registration
    Optimizing Trademark Registration with Data Analytics
    6 Min Read
    data analytics for finding zip codes
    Unlocking Zip Code Insights with Data Analytics
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Creating Value for Business: 2 Data Science Questions You Must Ask
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Modeling > Creating Value for Business: 2 Data Science Questions You Must Ask
Modeling

Creating Value for Business: 2 Data Science Questions You Must Ask

Damian Mingle
Damian Mingle
7 Min Read
SHARE

Business goals are no doubt important, but in an analytic project it makes sense to balance the organization’s goals with those of the Data Science department. Most individuals will recognize balance as a principle of art, but the notion of creating a sense of equilibrium between the business and the Data Scientist is just as foundational in today’s insight economy. To not cultivate this balance is to invite ruin into the organization. 

Question 1: What are the Data Science Goals?

Business goals are no doubt important, but in an analytic project it makes sense to balance the organization’s goals with those of the Data Science department. Most individuals will recognize balance as a principle of art, but the notion of creating a sense of equilibrium between the business and the Data Scientist is just as foundational in today’s insight economy. To not cultivate this balance is to invite ruin into the organization. 

Question 1: What are the Data Science Goals?

More Read

predictive analytics marketplace
Predictive Analytics in the Marketplace: Insights from PAWCON
How to Overcome BYOD Security Challenges
Who Gets the Call When Your Analytics Process Crashes?
Geospatial Data On-Demand
Determining Perception Gap Through Twitter [INFOGRAPHIC]

As a Data Scientist working in an organization, it is important to understand how the intended outputs of the Data Science project enable the achievement of the business objectives. Imagine a situation where a business has a set of defined goals, but the analytics team had a different target in mind or vice versa. The result is extra cost, time delay, and missed business opportunities. Unfortunately, these sort of happenings are more common than you would imagine in everyday business – and with organizations big and small. As a Data Scientist serving a business, it is prudent to define your goals in tandem with the business objectives and obtain buy-in of your interpretation. This can be done by explicitly documenting what you expect the output to be like and confirming its usefulness to the business unit you are supporting.   

Question 2: What is the Data Science success criteria?

Businesses should work with Data Scientists who know how to precisely define a correct outcome in technical terms. In truth, it could prove important to describe these outcomes in subjective terms; however, if this ends up being the case, the person in charge of making these subjective judgments needs to be identified. Neither the business nor the Data Science department will succeed with a moving target. Transparency and visibility are always good things in business. This allows individuals to manage towards a known expectation.

Organizations working with Data Scientists who simply have technical know-how are missing out on significant value within their analytic projects. Organizations should seek to find professionals who know how to translate business concepts into analytic outcomes. This skill should be considered primary over knowing the most advanced techniques and methods when analyzing data. Unfortunately, most organizations are still on a discovery mission with regard to what they need from Data Science. Organizations still remain beholden to the idea that if they hire a Ph.D. in some highly-analytical field then success is just around the corner for their organization. This is rarely the case. In fact, most Ph.D.’s need significant time to warm up to the corporate culture and learn the language of business before they can be fully effective.

It may seem obvious to the organization, but having your analytic superhero be able to quickly judge the type of Data Science problem that you are looking for them to contribute to is paramount to pulling it off.  Typically, being able to specify things like whether the target is a classification, description, prediction, or a clustering problem works well for all involved and starts to build context across disciplines in the organization. This becomes especially important when a Data Science department begins to grow and less experienced Data Scientists can learn to see more like senior Data Scientists; this can only happen with intentionality and purpose. 

Organizations should come to expect that one way a good Data Scientist will often demonstrate his or her ability is by reframing or redefining the problem put before them by the company. The first few times this may seem off-putting, but organizations who learn to embrace this sort of transformation of the business problem will be able to compete for the future. Practically speaking this may look like shifting to “medical device retention” rather than “patient retention” when targeting patient retention delivers results too late to affect the outcome.

As a business concerned with the ROI from your Data Science investment, you will undoubtedly want to see activities of the Data Scientist which specify criteria for model assessment. These typically present themselves as model accuracy or performance and complexity. In many cases, it is indispensable to see that a Data Scientist has defined benchmarks for evaluation criteria. Even in the case of subjective assessment, criteria definition becomes important. At times it can be difficult to meet a company’s Data Science goal of model explainability – or data insights provided by the model – if the Data Scientist has not done a good job of uncovering this as a businesses need. So, the adage “to begin with the end in mind” should prompt the Data Scientist to ask an appropriate series of questions of the business to ensure value creation.

Summary

Remember that the Data Science project success criteria are without a doubt different than the business success criteria. Any Data Scientist with experience will say that it is always best to plan with deployment from the beginning of a project. If the organization experiences a Data Scientist not following this best practice, expect spotty results and a bit of frustration from business counterparts. As an organization, it is vital to push your Data Scientist to work hard and be assertive within the project – as well as to use their mind and imagination. This should give him or her the permission to shape the future your company desires.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ESG reporting software
Data Shows How ESG Reporting Software Helps Companies Achieve Sustainability Goals
Big Data Infographic
ai in marketing
AI Helps Businesses Develop Better Marketing Strategies
Artificial Intelligence Exclusive
agenic ai
How Businesses Are Using AI to Make Smarter, Faster Decisions
Artificial Intelligence Exclusive
accountant using ai
AI Improves Integrity in Corporate Accounting
Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Impressions of SAP HANA

7 Min Read

Risk and Five Sigma Events – Can They Happen to You?

5 Min Read

Why Predicting the Future is So Darn Difficult

5 Min Read
Image
Business IntelligenceData VisualizationDecision ManagementKnowledge ManagementModeling

Big Data: Where Did All The Water Go?

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?