Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Big Data ROI? Not Likely in Year 1
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Big Data ROI? Not Likely in Year 1
Best PracticesBig DataCommentaryCulture/Leadership

Big Data ROI? Not Likely in Year 1

paulbarsch
paulbarsch
6 Min Read
Image
SHARE

 Image

 Image

 Depending on the size and scope of your forthcoming big data project, in most instances it’s unfair to expect positive cash flows in year one. That’s because in addition to a potentially steep implementation and learning curve, it takes time to master and adopt open source big data technologies. Thus, for year one, it’s important to adjust expectations and look at other forms of “return” while you wait for substantial financial results.

More Read

Big Data Guru
Big Data as a Service (BDaaS) Is the Next Big Thing!
How to Target and Retain Millennials in the Automotive Sector with Big Data
Identity Crisis
Looking Back at 14 Years of White House Website Designs…in Pictures
Dear Oracle: Cloud Multitenancy DOES Matter

A seed planted in good soil and supplied with water and sunshine eventually blooms. In the same way, it is likely to take more time than anticipated for a big data investment—especially in open source—to pay financial dividends. Why?

First, big data skills aren’t plentiful. This article suggests the big data skills gap is only widening, even as universities churn out newly minted analytics graduates. With the explosion of big data technologies and heavy demand from companies to implement and use them, any slack in the skills market is quickly absorbed. So, even if you get the green light to move ahead with your big data project, finding the right personnel to implement and run it—at least right away—isn’t guaranteed.

Second, it takes experience to implement big data open source technologies with a level of quality and consistency. It may seem obvious but many of the sixty big data open source projects don’t come with the same level of documentation and established best practices as traditional off-the-shelf software. This means there’s a lot of tribal knowledge for implementing big data technologies that’s locked away in various consulting vaults, or in the minds of big data experts. Too much trial and error with big data technologies could potentially put you behind the 8-ball in terms of gaining financial results quickly.

Here are additional implications to consider for your financial business case:

Modeling Cash Flows Might Be Tricky

Despite the financial rigor associated with modeling cash flows, it’s really all about assumptions. As in, you’ll need to ask yourself: “What incremental net cash will come into the business as a result of my big data project?” If you assume that skills and experience for various open source big data projects are scarce, you’ll have to come to grips with the possibility of negative net cash flows for the program in year one. Negative net cash flows won’t affect the ability to perform Net Present Value (NPV) calculations, but they certainly make IRR calculations challenging.

Whether or not you have negative cash flows for year one will depend on whether your project scope is ambitious, the availability of skills and experience, employee adoption (got change management?) and more.

Assess Project Risk

The open source community doesn’t stand still. There is always something new coming out and occasionally there’s back and forth bickering among competing projects. For open source initiatives, additional project risk should be accounted for in business value calculations. 

For example, if your corporate cost of capital is 8%, it might be prudent to adjust it to 10% or even 12% for high risk projects. This adjustment will invariably affect your NPV calculations and provide feedback as to whether to do the project—or not. And if you have limited capital, NPV analysis has the added benefit of helping rank competing projects based on value contribution.

Understand Your Timeline for Business Value

For some companies, net negative cash flows for year one might be unacceptable. However, there are scenarios in which you could see value in a shorter timeline for open source big data projects. For example, if a pilot project looks promising, it might be possible to start seeing positive net cash flows at the end of year one if you go-ahead with a larger project. Can’t wait that long for project profitability to accrue? This video (around the 30 minute mark) describes KPIs to look at instead of ROI for the first year of your big data project.

Whatever open source big data project you choose, it should bring in net new (incremental) cash at some point. The key factors you’ll need to decide are whether it’s acceptable to have negative net cash flows year one (or not), and your risk tolerance for projects using open source. Negative big data project cash flows might be acceptable for a while, but unless your initiative is a strategic one, you won’t be increasing corporate wealth without earning a good return for stakeholders.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Data Management: Reaching Into the Cloud

7 Min Read

Book: SAS for Dummies

1 Min Read
all-in-one data reporting
Big DataExclusive

SMEs Are Discovering The Beauty Of All-In-One Data Reporting Platforms

5 Min Read

Visualizing the census

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?