Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Road to Success with Big Data: A Closer Look at Expectations vs. Reality
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Software > Hadoop > The Road to Success with Big Data: A Closer Look at Expectations vs. Reality
AnalyticsBig DataHadoopMapReduceSQLUnstructured Data

The Road to Success with Big Data: A Closer Look at Expectations vs. Reality

Farnaz Erfan
Farnaz Erfan
5 Min Read
hadoop
SHARE

Big Data is complex. The technologies in Big Data are rapidly maturing, but are still in many ways in an adolescent phase. While Hadoop is dominating the charts for Big Data technologies, in the recent years we have seen a variety of technologies born out of the early starters in this space, such as Google, Yahoo, Facebook and Cloudera. To name a few:

Big Data is complex. The technologies in Big Data are rapidly maturing, but are still in many ways in an adolescent phase. While Hadoop is dominating the charts for Big Data technologies, in the recent years we have seen a variety of technologies born out of the early starters in this space, such as Google, Yahoo, Facebook and Cloudera. To name a few:

  • MapReduce: Programming model in Java for parallel processing of large data sets in Hadoop clusters
  • Pig: A high-level scripting language to create data flows from and to Hadoop
  • Hive: SQL-like access for data in Hadoop
  • Impala: SQL query engine that runs inside Hadoop for faster query response times

It’s clear, the spectrum of interaction and interfacing with Hadoop has matured beyond pure programming in Java into abstraction layers that look and feel like SQL. Much of this is due to the lack of resources and talent in big data – and therefore the mantra of “the more we make Big Data feel like structured data, the better adoption it will gain.”

But wait, not so fast—you can make Hadoop act like a SQL data store. However, there are consequences, as Chris Deptula from OpenBI explains in his blog, A Cautionary Tale for Becoming too Reliant on Hive. You are forgoing flexibility and speed if you choose Hive for a more complex query as opposed to pure programming or using a visual interface to MapReduce. 

More Read

Big Data Quality: What’s Old is New Again
Data Mining and Analysis Aren’t Always the Answer
Social Analytics?
Which JS Framework Is Best For Big Data Development?
Big Data Is The Next Frontier For Innovation, Competition and Productivity

This goes to show that there are numerous areas of advancements in Hadoop that have yet to be achieved – in this case better performance optimization in Hive. I come from a relational world – namely DB2 – where we spent a tremendous amount of time making this high-performance transactional database – that was developed in the 70’s – even more powerful in the 2000s, and that journey continues today.

Granted, the rate of innovation is much faster today than it was 10, 20, 30 years ago, but we are not yet at the finish line with Hadoop. We need to understand the realities of what Hadoop can and cannot do today, while we forge ahead with big data innovation.

Here are a few areas of opportunity for innovation in Hadoop and strategies to fill the gap:

  • High-Performance Analytics: Hadoop was never built to be a high-performance data interaction platform. Although there are newer technologies that are cracking the nut on real-time access and interactivity with Hadoop, fast analytics still need multi-dimensional cubes, in-memory and caching technology, analytic databases or a combination of them.
  • Security: There are security risks within Hadoop. It would not be in your best interest to open the gates for all users to access information within Hadoop. Until this gap is closed further, a data access layer can help you extract just the right data out of Hadoop for interaction.
  • APIs: Business applications have lived a long time on relational data sources. However with web, mobile and social applications, there is a need to read, write and update data in NoSQL data stores such as Hadoop. Instead of direct programming, APIs can simplify this effort for millions of developers who are building the next generation of applications.
  • Data Integration, Enrichment, Quality Control and Movement: While Hadoop stands strong in storing massive amounts of unstructured / semi-structured data, it is not the only infrastructure in place in today’s data management environments. Therefore, easy integration with other data sources is critical for a long-term success.

The road to success with Hadoop hadoop and it is important to understand what is possible today and what to expect next. With all the hype around big data, it is easy to expect Hadoop to do anything and everything. However, successful companies are those that choose combination of technologies that works best for them.

What are your Hadoop expectations?

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Diverse Research Datasets
The 5 Best Platforms Offering the Most Diverse Research Datasets in 2026
Big Data Exclusive
macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Outsourcing Your Data Warehouse

5 Min Read
big data debate
AnalyticsBest PracticesBig DataBusiness IntelligenceCulture/LeadershipData Management

The Big Data Debate: Correlation vs. Causation

11 Min Read

“Political prediction markets — in which participants buy and sell “contracts”…”

1 Min Read
website seo
Data MiningMarketing

How to Use Big Data to Improve Your Website’s SEO

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?