By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data science anayst
    Growing Demand for Data Science & Data Analyst Roles
    6 Min Read
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: What is a good classification accuracy in data mining?
Share
Notification Show More
Latest News
ai in automotive industry
AI Is Changing the Automotive Industry Forever
Artificial Intelligence
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > What is a good classification accuracy in data mining?
Business IntelligenceData Mining

What is a good classification accuracy in data mining?

SandroSaitta
Last updated: 2010/04/11 at 8:20 PM
SandroSaitta
6 Min Read
SHARE

What a good question! Or what a bad question should I say. In fact, this question is not a good one since if we ask it this way, we might expect an answer that is valid for any data mining problem. This is of course not possible. This question may be asked by a data miner, since it’s one way of measuring the quality of the data mining algorithm.  Indeed, you can estimate how good your decision tree or neural networks are by estimating the classification rate of the test set. My point in this article is to highlight the fact that the classification percentage depends on the application in which data mining is used.

Let me explain that with a few examples from my own experience. I have a friend working in the domain of face recognition. According to him, an algorithm (machine learning in his case) is well fitted to the problem when you get a classification accuracy above 97% for example. This may be true, but only in his domain, which is face recognition. In this domain, you apply machine learning to pictures to recognize faces. In this case, you have no outside effect or variables that could influence the output (the class you predict) which is not present in the pixels…

More Read

data mining

Data Mining Technology Helps Online Brands Optimize Their Branding

What Role Does Big Data Have on the Deep Web?
5 Data Mining Tips to Leverage the Benefits of Surveys
Database Activity Monitoring – A Security Investment That Pays Off
Perform Data Mining With Web Scrapers to Track Prices

What a good question! Or what a bad question should I say. In fact, this question is not a good one since if we ask it this way, we might expect an answer that is valid for any data mining problem. This is of course not possible. This question may be asked by a data miner, since it’s one way of measuring the quality of the data mining algorithm.  Indeed, you can estimate how good your decision tree or neural networks are by estimating the classification rate of the test set. My point in this article is to highlight the fact that the classification percentage depends on the application in which data mining is used.

Let me explain that with a few examples from my own experience. I have a friend working in the domain of face recognition. According to him, an algorithm (machine learning in his case) is well fitted to the problem when you get a classification accuracy above 97% for example. This may be true, but only in his domain, which is face recognition. In this domain, you apply machine learning to pictures to recognize faces. In this case, you have no outside effect or variables that could influence the output (the class you predict) which is not present in the pixels of the picture. Thus, a very high classification accuracy can be reached. Don’t get me wrong, I’m not saying that face recognition is an easy task, rather that with the correct algorithm and the right data preparation, a very high classification rate can be reached.

Let’s take another application: predicting user clicks on some given ads. That’s the current application I’m working on with the FinWEB project. In this case, most of my models reach a classification accuracy of around 70%. Is that bad? Well, according to the application domain, not really. When we predict if the user will click or not on the ad, we don’t have all possible information at our disposal. We only have some data that represent his behavior in a given time frame. We don’t have all the user brain in a data base. There are so many influencing factors, that it is quite satisfying to reach a classification percentage of 70%.

Finally, I will take the example of data mining in finance. When applying data mining to the problem of stock picking, I obtained a classification accuracy range of 55-60%. While it looks to be a poor result, it’s not. We should consider all the influencing factors that can affect the price of a stock. While we may use hundreds of input parameters, they may only represent a very small percentage of all information that could influence the price of a stock. This is very far from the face recognition case with every pixel defined.

My point in this post was to show that there is no definitive answer to this question, which is in fact not a good one. The classification accuracy mainly depends on the application domain. Feel free to share your own experiences by commenting this post!

Link to original post

TAGGED: data mining, user behavior
SandroSaitta April 11, 2010
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai in automotive industry
AI Is Changing the Automotive Industry Forever
Artificial Intelligence
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

data mining
Data Mining

Data Mining Technology Helps Online Brands Optimize Their Branding

7 Min Read
big data technology has helped improve the state of both the deep web and dark web
Big Data

What Role Does Big Data Have on the Deep Web?

8 Min Read
surveys data
Data Mining

5 Data Mining Tips to Leverage the Benefits of Surveys

11 Min Read
Security

Database Activity Monitoring – A Security Investment That Pays Off

11 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?