Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: An Analysis of the R-help Mailing List
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > An Analysis of the R-help Mailing List
AnalyticsR Programming Language

An Analysis of the R-help Mailing List

DavidMSmith
DavidMSmith
3 Min Read
SHARE

Even though forums and question-and-answer services like StackOverflow are emerging as the place to find crowdsourced technical help when using software like R, the traditional r-help email list is still going strong.

Even though forums and question-and-answer services like StackOverflow are emerging as the place to find crowdsourced technical help when using software like R, the traditional r-help email list is still going strong. UCLA grad student and R user Richard Kwock presented a poster at last month’s JSM conference with an analysis of traffic on the list, showing it’s still generating nearly 3000 messages per month: 

Mailing list counts
Thanks to the generosity of R experts who monitor the list (including the most active responder, R core member Brian Ripley), R users are likely to find an answer to their questions by mailing to the list. (Although the answer to a poorly-framed question might well be: “read the posting guide!” — newbies are adviced to lurk on the list for a while before diving in with a question.) In fact, over the years and despite the growing traffic on the list, the likelihood of a response has increased. New questions have received 2.2 responses on average in recent years:

Responses per email

More Read

The Predictive Power of Nonsense
When Do You need All the Data for Big Analytics?
The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
Too Much Big Data, Too Few Big Ideas
Union Pacific Railroad Turned to the Industrial Internet to Stay on Track

The most popular categories of questions on the list are: data structures (objects like lists and data frames), data manipulation (functions like rep and paste); and statistical functions (like rnorm and lm). The most active time for the list is early in the morning for the US West Coast, most likely because it coincides with the early evening in western Europe, where many of the most active list participants are located.

List activity timesRichard used R (of course!) to perform many other analyses of the list traffic, including charts of the top 20 most mentioned R functions (#1 is c, the vector operator), the top 20 mailing list contributors, and trends in popular topics (graphics, data mining, and bayesian analysis are all growing in interest). For the complete analysis and more charts, check out Richard’s poster linked below.

Richard Kwock and Robert E. Weiss:  The Evolution of R: Growth of the R-Help Email Archives over Time 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

data analytics for revenue
AnalyticsBig DataExclusive

7 Tips for Using Data Analytics to Inform Revenue Operations

6 Min Read
Image
AnalyticsBig DataBusiness IntelligenceData MiningDecision ManagementITMarketingPredictive AnalyticsSocial DataUnstructured DataWorkforce Data

Big Data Is Nothing Without Its Little Brother

4 Min Read
managing big data business
AnalyticsBig Data

7 Helpful Tips for Managing Big Data

8 Min Read

Blog interviews – more predictive analytics FAQs

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?