By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data-driven white label SEO
    Does Data Mining Really Help with White Label SEO?
    7 Min Read
    marketing analytics for hardware vendors
    IT Hardware Startups Turn to Data Analytics for Market Research
    9 Min Read
    big data and digital signage
    The Power of Big Data and Analytics in Digital Signage
    5 Min Read
    data analytics investing
    Data Analytics Boosts ROI of Investment Trusts
    9 Min Read
    football data collection and analytics
    Unleashing Victory: How Data Collection Is Revolutionizing Football Performance Analysis!
    4 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: 7 Tips for Using Data Analytics to Inform Revenue Operations
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > 7 Tips for Using Data Analytics to Inform Revenue Operations
AnalyticsBig DataExclusive

7 Tips for Using Data Analytics to Inform Revenue Operations

Stay ahead of the curve with data-driven revenue operations. Implement these 7 tips to gain a competitive edge and drive profitability.

Philip Piletic
Last updated: 2023/08/09 at 3:10 PM
Philip Piletic
6 Min Read
data analytics for revenue
Shutterstock Licensed Photo - 2080021201 | By Blue Planet Studio
SHARE

By analyzing the revenue streams of a particular business, you can gain deep insights about the processes that the company uses to make money. In some cases, this can tell you where funds and time are being wasted, while others might learn that they’re missing out on opportunities to increase efficiency, or even uncover some segment of the market they should be emphasizing further with their sales efforts. 

Contents
1. Cut Down on Your Churn Rate2. Learn How People Interact with Your Digital Assets3. Optimize Recurring Sources of Income4. Eliminate Logistics Hiccups5. Don’t Be Afraid to Change Database Platforms6. Clean Up the Data Once It’s Extracted7. Read Up on Machine Learning Before Deploying It

Organizations that use data analysis to improve their profitability can use the following techniques to streamline their operations and reorient their business workflows.

1. Cut Down on Your Churn Rate

No matter how good a given service is, some customers will stop using it over time. This is known as the attrition or churn rate of the business.

Retaining existing customers can be even better than attracting new ones, especially for a growing business. Customer lifetime value and acquisition cost figures can tell your business a great deal about why they lose customers and what they need to do in order to hold onto them.

More Read

data security unveiled

Data Security Unveiled: Protecting Your Information in a Connected World

Empowering Parents With Big Data: Ensuring Child Safety And Development
Security In Automated Document Processing: Ensuring Data Integrity And Confidentiality
Unleashing Victory: How Data Collection Is Revolutionizing Football Performance Analysis!
Power of ETL: Transforming Business Decision Making with Data Insights

2. Learn How People Interact with Your Digital Assets

Collecting information about customers’ online user experience is an excellent way to learn how they actually interact with your site and other sales touchpoints. Analyze the relevant logs to see if there are any areas that seem to be trouble spots or cause frequent support requests.

While you don’t want to make changes unnecessarily, numerical data that seems to suggest there’s some issue can make a strong case for improving your product by developing new features or code refactoring. Spending a little money on improvement now can translate into increased revenue later, considering that some studies have suggested that even user experience optimizations offer a 9,900% return on investment.

3. Optimize Recurring Sources of Income

Firms that make use of subscription plans or intermittent ordering workflows can rely on insights derived from their revenue analytics to calculate the average term length their customers buy into. This data is also a perfect way to figure out whether a particular type of customer would respond to being upsold on any additional products or services. 

Taking a closer look at the average value of goods ordered is a good way to find situations where people might be open to buying a more expensive package.

4. Eliminate Logistics Hiccups

Collecting information about your organization’s current order fulfillment workflows can help you locate potential problems before they become big issues. When customers receive everything they order on time, there’s a much greater chance of them ordering more expensive products or services in the future. 

Those who only deliver virtual goods, such as apps or digital music, can use similar types of data signals to identify potential problems related to their own distribution platforms.

5. Don’t Be Afraid to Change Database Platforms

Picking out the right analytical database can go a long way toward making sense of all the data your organization is collecting. Companies that have revenue information stored in a conventional flat spreadsheet might do well to opt for a relational database like MySQL or Postgres. Those who have massive notes or snippets files would probably like something non-relational such as a Hadoop-based solution. 

Imperative and declarative software packages, such as classic xBase-style solutions, may work in certain edge cases as well.

6. Clean Up the Data Once It’s Extracted

It’s usually best not to use data straight from an API, regardless of how comprehensive that information might be. Standardizing and validating your sales data is an important process, because otherwise you won’t know whether you can actually trust any inferences drawn from it.

By taking the time to sort the data into some kind of logical array, you can also ensure that the analysis process takes much less time – and with more accurate revenue projections – than it would have if the number crunching had to happen all at once.

7. Read Up on Machine Learning Before Deploying It

Artificial intelligence-based revenue analysis technology can provide deep insights into how different revenue streams could be improved. The problem is that many people who use them don’t know quite how the underlying processes work. Learning more about the way that your chosen analytics package comes to its conclusions will help you identify outliers and spot any inconsistencies that the software doesn’t.

Learning more about any part of the business analysis process can go a long way toward making smarter data-driven decisions, so it pays to invest a bit of time in mastering your chosen data analysis package. Dedicating a little extra effort now can pay huge dividends when it comes time to make big changes to your revenue stream in the future.

TAGGED: big data, data analaytics
Philip Piletic August 9, 2023
Share This Article
Facebook Twitter Pinterest LinkedIn
Share
By Philip Piletic
Follow:
His primary focus is a fusion of technology, small business, and marketing. Author, editor, and tech junkie, in love with startups, traveling and helping others get their ideas off the ground. Unwinds with a glass of scotch and some indie rock on vinyl.

Follow us on Facebook

Latest News

iot and cloud technology
IoT And Cloud Integration is the Future!
Internet of Things
ai in marketing
4 Ways AI Can Improve Your Marketing Strategy
Artificial Intelligence
data security unveiled
Data Security Unveiled: Protecting Your Information in a Connected World
Security
it management for data-driven businesses
7 Major IT Infrastructure Challenges for Data-Driven Companies
IT

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

data security unveiled
Security

Data Security Unveiled: Protecting Your Information in a Connected World

8 Min Read
child online safety data
Big Data

Empowering Parents With Big Data: Ensuring Child Safety And Development

13 Min Read
data integrity
Data Management

Security In Automated Document Processing: Ensuring Data Integrity And Confidentiality

7 Min Read
football data collection and analytics
Big Data

Unleashing Victory: How Data Collection Is Revolutionizing Football Performance Analysis!

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?