Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: To Hell with Business Intelligence, try Decision Management.
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > CRM > To Hell with Business Intelligence, try Decision Management.
Business IntelligenceCRMData MiningPredictive Analytics

To Hell with Business Intelligence, try Decision Management.

JamesTaylor
JamesTaylor
6 Min Read
SHARE

Well that headline probably got your attention. It came from an article on CIO Magazine:To Hell with Business Intelligence: 40 Percent of Execs Trust Gut.

According to recent research from Accenture, nearly half (40 percent) of major corporate decisions are based on the good ‘ole gut.

Interesting. But why?

61 percent said it was because good data was not available, and just over half (55 percent) said their decisions relied on qualitative and subjective factors.

More interesting. Of course it could easily be argued that even bad data is better than nothing, especially if you can make some assessment of how bad it might be or at least understand its limitations. And the second one should worry CEOs and boards across the country – “qualitative and subjective factors”. These are often illegal – think insurance or banking where decisions about pricing or risk may not be based on these kind of factors – and always influenced by the underlying biases of the decision maker.
But then we get to what I makes this interesting to me (as a writer on decision management):

Other reasons related to workforce challenges: 23 percent of
respondents said “insufficient quantitative skills in employees” wer…

More Read

Using predictive analytics for fantasy football
Factors Influencing the Cost of Developing an AI-Based Smart Home App
6 Key Capabilities an Embeddable Analytics Software Should Deliver
Big Data and Analytics In Sports: A Game Changer
Mobile Business Intelligence: Strategies, Trends and Pitfalls


Well that headline probably got your attention. It came from an article on CIO Magazine:To Hell with Business Intelligence: 40 Percent of Execs Trust Gut.

According to recent research from Accenture, nearly half (40 percent) of major corporate decisions are based on the good ‘ole gut.

Interesting. But why?

61 percent said it was because good data was not available, and just over half (55 percent) said their decisions relied on qualitative and subjective factors.

More interesting. Of course it could easily be argued that even bad data is better than nothing, especially if you can make some assessment of how bad it might be or at least understand its limitations. And the second one should worry CEOs and boards across the country – “qualitative and subjective factors”. These are often illegal – think insurance or banking where decisions about pricing or risk may not be based on these kind of factors – and always influenced by the underlying biases of the decision maker.
But then we get to what I makes this interesting to me (as a writer on decision management):

Other reasons related to workforce challenges: 23 percent of
respondents said “insufficient quantitative skills in employees” were a
main impediment at their company, and 36 percent said their company
“faces a shortage of analytical talent.”

These two are, frankly, only a problem if you think data is for helping an individual make a decision (decision support) and nothing else. If, as I do, you believe that data can also be used to automate and manage decisions (decision management) then these problems fade into the background.
If the system tells the user what decision to make or even what 2 or 3 choices are valid, appropriate, legal and potentially profitable then the user does not need quantitative skills. The user just needs to be able to read and then use information. Call center representative should not be required to have quantitative skills to use customer data to make better retention decisions – they should be required to have people skills to make the customer feel good about the targeted retention offer the system suggests (that is based on policies, regulations and analytics).
Using data to build decision management systems means that the users don’t need to be quants. You just need some folks with quant skills to put the right models into your operational systems. This means that the analytical talent you do have is immediately multiplied. Your analytic team build a predictive analytic model, to predict customer churn for example, and that model gets embedded in a decision service that delivers customer retention offers. All your call center representatives now act based on an analytically-enhanced decision without having to have any analytical skills themselves.
It was reassuring that

Two-thirds surveyed recognize their decision-making failings and want to fix them

Though it was a pity that they thought more of the same would do so:

nearly three-quarters (72 percent) of the Accenture survey respondents say they are striving to increase their organization’s business analytics and BI use.

Someone once said that the definition of insanity was to do the same thing the same way and expect a different result. All these companies have spent a ton of money on BI without changing their decision making. Perhaps they should try something new….


Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Using Data
Big DataBusiness IntelligenceDecision Management

3 Pitfalls to Avoid When Using Data to Make Decisions

4 Min Read

Seeing Around Corners: How Data Can Help

5 Min Read

The Dirichlet Process Part 1: Simplex

0 Min Read
How to Choose a New Inventory Software System
AnalyticsBusiness IntelligenceSoftware

How to Choose a New Inventory Software System

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?