Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Planning For The Future: Understanding Scalability Requirements
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Planning For The Future: Understanding Scalability Requirements
AnalyticsBig Data

Planning For The Future: Understanding Scalability Requirements

LyndsayWise
LyndsayWise
4 Min Read
Image
SHARE

ImageWhen organizations embark on any analytics, data warehousing, BI, or broader software project, much of the focus remains on how to meet current goals and challenges. Requirements gathering looks at current data requirements and business rules in order to support development for solutions that will be supported on the premise of current data volumes, number of end users, data sources, etc.

ImageWhen organizations embark on any analytics, data warehousing, BI, or broader software project, much of the focus remains on how to meet current goals and challenges. Requirements gathering looks at current data requirements and business rules in order to support development for solutions that will be supported on the premise of current data volumes, number of end users, data sources, etc. And although many of these solutions are successful, the reality is that they are only successful in as much as they will also be able to support future requirements. 

When evaluating software, platforms, new analytics, or BI expansion, the following considerations need to be addressed in order to ensure that a solution can scale:

  1.  Type of platform: The type of platform selected will determine the range of expansion available as well as the restrictions that exist in terms of licensing, new data sources, storage, latency, etc.
  2. Number of data sources: Over time any BI initiative will expand simply due to the amount of data being stored. Keeping historical data and adding additional years worth of data naturally expands the storage required. The number of data sources also need to be taken into account. Additional data sources translates into more data integration, new business rules, and additional resources.
  3. Number of users/departments: Although solutions generally start off addressing a few issues, the more successful BI projects are, the more likely they will expand into other areas of the organization. Consequently, IT departments need to take expanded use into account so that any licensing and development requirements will be evaluated to make sure they meet these needs.
  4. Types of users: Different roles within the organization will interact with BI differently. Coupling this with market trends such as self-service and data discovery requires solutions that have built-in capabilities enabling flexible interaction and easy expansion for new development.
  5. Integration: In some cases data integration requires the bulk of the development effort. Expanding BI and analytics use potentially leads to new integration considerations. Although not always possible to think of everything in advance, understanding how broader solutions integrate with each other can lead to less hassles down the road.

This 5 considerations are a subset of many and just scratch the surface when looking at scalability. All of these areas look at internal aspects, and do not take into account the solutions being used which have their own criteria to evaluate when identifying how they scale. Even though it isn’t always easy to know what future projects will entail, the reality is that the more forward looking an organization is, the more likely less rework will be required in the future.

More Read

fintech and big data reshaping lending
3 Ways Fintech Is Using Big Data to Reshape Lending
Leveraging Commerce Media & Data Analytics in Ecommerce
How can Jarvis be helpful in the Future of Big Data Analytics?
Hiring a Data Scientist? Machine Intelligence Can Help
How to load your iPhone location data into R

This post was written as part of the IBM for Midsize Business program, which provides midsize businesses with the tools, expertise and solutions they need to become engines of a smarter planet. I’ve been compensated to contribute to this program, but the opinions expressed in this post are my own and don’t necessarily represent IBM’s positions, strategies or opinions.

website statistics

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive
dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Exterior Design

6 Min Read
Big Data and Sales
Data VisualizationWeb Analytics

Big Data Can Help You Amplify Your Sales In 2019

5 Min Read

Social Collaboration Is in Finance’s Future

9 Min Read
Image
AnalyticsBig DataCommentaryData VisualizationData WarehousingExclusiveModelingPredictive AnalyticsRisk Management

Science Needs to Be Less Certain

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?