Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Perils of Forecasting Benchmarks
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > The Perils of Forecasting Benchmarks
Best PracticesPredictive Analytics

The Perils of Forecasting Benchmarks

mvgilliland
mvgilliland
3 Min Read
SHARE

Benchmarks of forecasting performance are available from several sources, including professional organizations and journals, academic research, and private consulting/benchmarking organizations. But there are several reasons why industry forecasting benchmarks should not be used for setting your own forecasting performance objectives.

1) Can you trust the data?

Benchmarks of forecasting performance are available from several sources, including professional organizations and journals, academic research, and private consulting/benchmarking organizations. But there are several reasons why industry forecasting benchmarks should not be used for setting your own forecasting performance objectives.

More Read

Technology Innovation in 2013: A Business and IT Priority
Another BI Vendor Acquired
The Rising Value of Predictive Analytics
Predictive Analytics Helps New Dropshipping Businesses Thrive
Can Predictive Analytics Prevent Tax Evasion?

1) Can you trust the data?

Are the numbers based on rigorous audits of company data or responses to a survey? If they are based on unaudited survey responses, do the respondents actually know the answers or are they just guessing?

2) Is measurement consistent across the respondents?

Are all organizations forecasting at the same level of granularity, such as by product, customer or region? Are they forecasting in the same time interval, such as weekly or monthly? Are they forecasting by the same lead time offset, such as three weeks or three months in advance? Are they using the same metric? It is important to note that even metrics as similar sounding as MAPE, weighted MAPE, and symmetric MAPE can deliver very different values from the same data.

3) Finally, and most important, is the comparison relevant?

Does the benchmark company have equally forecastable data?

Consider this worst-case example:

Suppose a benchmark study shows that Company X has the lowest forecast error. Consultants and academics then converge on Company X to study its forecasting process and publish reports touting Company X’s best practices. You read these reports and begin to copy Company X’s best practices at your own organization.

However, upon further review using FVA analysis, it is discovered that Company X had very easy-to-forecast demand, and it would have had even lower error if it had just used a naive forecast. In other words, Company X’s so-called best practices just made the forecast worse.

This example is not far-fetched. Organizations at the top of the benchmark lists are probably there because they have the easiest-to-forecast demand. Many organizational practices, even purported best practices, may only make the forecast worse.

Benchmarks tell you the accuracy that best-in-class companies are able to achieve. But…they do not tell you whether their forecasting environment is similar to yours or worthy of your admiration. Without that information, industry benchmarks are largely irrelevant and should not be used to evaluate your performance or set performance objectives.

 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive
dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Risk-taking

5 Min Read

Email Gaining Ground, Says Forrester

4 Min Read

Getting to Enterprise Application 2.0

8 Min Read

Apache Spark and Hadoop: The best big data solution for enterprises

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?