Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Big Data: A Kick in the Business Intelligence Expert’s Habits
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Big Data: A Kick in the Business Intelligence Expert’s Habits
AnalyticsBusiness Intelligence

Big Data: A Kick in the Business Intelligence Expert’s Habits

Editor SDC
Editor SDC
5 Min Read
SHARE

For some time the word Big Data appeared and is widely used by journalists, analysts, consultants and some software or hardware vendors interested in the world of BI. No definition has emerged and speeches about Big Data mix many things: overall volume of data to be processed, the volume of the elementary data (web log, text, sensors networks, photo, video), data types (structured, unstructured, multi-structured) and analytical ambitions (going beyond BI), etc.

For some time the word Big Data appeared and is widely used by journalists, analysts, consultants and some software or hardware vendors interested in the world of BI. No definition has emerged and speeches about Big Data mix many things: overall volume of data to be processed, the volume of the elementary data (web log, text, sensors networks, photo, video), data types (structured, unstructured, multi-structured) and analytical ambitions (going beyond BI), etc.

It is unclear whether the word Big Data is adapted and will continue, but it is certain that simultaneously demand for decision support is growing and new solutions offers appear (what about the chicken and the egg). “New” requests and “new” technology solutions push to process more data both in terms of volume and variety. Volume of data generated daily in information systems is growing exponentially and therefore volume explodes also for decision support systems. Ten years ago Teradata animated a club composed of clients who had more than a Terabyte in their decision system; today we have a club for companies which have more than one Petabyte.

More Read

Five Steps to Creating an EBM Program?
How Airlines Measure Loyalty Using Big Data & Analytics
Change.gov and Cluen: A Case Study in Privacy
American Recovery Act Business Intelligence
Data Driven Marketing: A Real Life Use Case

What seems to me most important in all these new approaches is not necessarily the volume, but the desire to develop advanced analytical approaches in dealing with all kinds of raw data, which require a lot of work to draw business information. No longer you can take only some invoice lines and do some basic operations to generate a more or less aggregated data which has business value. For example you could want to identify a customer / prospect surfing the web, define if he has a positive or negative image of your brand or product, or identify networks of friends or defrauders who could create business concerns, or implement engines recommendations that are based on customers’ web browsing and profile, etc.…

 In order to have functionalities mentioned above, you have to get a set of tools that extract raw data (e.g. web logs, texts, social networks), to gain knowledge (profile, segment, affinity, churn), to predict (attrition, propensity, virality) and act (recommendations for tenders, pricing). You have to be able to mix data from a classic intelligence information system, with data extracted and structured via MapReduce (Hadoop, Aster Data) programs. Beyond data integration you have to work with data mining tools for advanced analysis, develop models and use them to enhance business processes, for example on websites, call centers, or your various channel interactions with the customer.

Teradata which has a long history in data analysis could not miss this exciting new area. As classical solutions are poorly suited for some treatments needed for these “new” data for the world of business intelligence, Teradata has acquired Aster Data at the beginning of 2011, a company which has a specialized patented solution offering SQL-MapReduce ™. With these additional means to better exploit large volumes of non-relational data, Teradata are able to offer more innovative analytical solutions to customers seeking to use their information systems to differentiate their market positioning (customer relationship analysis and networks, marketing optimization, fraud detection and prevention, etc…). What is interesting for Teradata is not particularly the growth of data, but rather the hidden value that can be found in this data by applying data science. 

To go further on Teradata Aster specialized patented solution offering SQL-MapReduce ™, you can usefully consult the following link, and discover why companies like LinkedIn, Gilt Groupe, and Barnes & Noble have tapped the data deluge for competitive advantage with a Teradata Aster solution: http://www.asterdata.com/product/index.php

TAGGED:bibig databusiness intelligence
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive
warehousing in the age of big data
Top Challenges Of Product Warehousing In The Age Of Big Data
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

local SEO companies
Big DataExclusive

5 Ways Local SEO Companies Are Optimizing Their Models With Big Data

7 Min Read

Predictive Analytics: 8 Things to Keep in Mind (Part 6)

6 Min Read

Survey Shows Business Intelligence Wants and Struggles of SMBs

5 Min Read
big data productivity
Business IntelligenceCollaborative DataCulture/LeadershipSocial Data

When Big Hearts Meet Big Data: 6 Nonprofits Using Data to Change the World

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?