Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: What Is a Data Scientist (and What Isn’t)?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Software > Hadoop > What Is a Data Scientist (and What Isn’t)?
Hadoop

What Is a Data Scientist (and What Isn’t)?

nraden
nraden
7 Min Read
SHARE

The perception among organizations over the past five years is that more quantitative methods, with or without Big Data, are critical to success. The problem is that most commercial organizations have little to no depth in these disciplines. On the other hand, businesses where data and data products are their primary revenue stream have an abundance of talent in this area.

The perception among organizations over the past five years is that more quantitative methods, with or without Big Data, are critical to success. The problem is that most commercial organizations have little to no depth in these disciplines. On the other hand, businesses where data and data products are their primary revenue stream have an abundance of talent in this area. Some, like Google or Amazon, employ hundreds of applied mathematicians and statisticians, in the same way that manufacturing companies employ mechanical or electrical engineers. Medical informatics, genomics, even intelligence and defense groups work on the bleeding edge of research into methods for classification, prediction and optimization. Because this work is rather unique, involving massive data volumes, unruly data formats and sources that are beyond the typical enterprise data flows, coupled with a broader understanding of the business or organization, a name for these professionals emerged: “Data Scientist.

But the term “Data Scientist” is an over-reaching title.

Lets look at how this actually plays out. The work is clearly divided between true scientists, those who research and create algorithms and methods, publish papers and actively participate in their discipline’s communications, and those who understand and employ quantitative methods, design, test and deploy models but do not create new science. I refer to these two as Type I and Type II respectively (in a forthcoming research report from Constellation Research, I go into much more detail and describe Types III and IV also). The former are truly scientists, the latter are not, though this is the group typically referred to as data scientists. There will be very few “data scientists” in commercial organizations. Data scientists work in research, academia and organizations where the production of new methods and algorithms are the core of the enterprise. Google, Amazon, Wall Street, etc. – these are companies whose scientist produce new methods in quantitative science and publish in peer-reviewed journals.

More Read

Tracking the Customer Journey Is Critical for Engagement
More Questioning Minds Needed (And Don’t Forget the Analytics)
The Big Data Uprising: It’s Not About Big Or Data
Self-Serve Analytics Really Aren’t DIY
BI & Analytic Trends for Business Value

Although, there is a prejudice for employing PhD’s as Type II’s, it isn’t necessary.

Despite the unfortunate name given to this growing class of professionals (scientists they are not, in general), it does represent a new sort of role in organizations. Finding people to fill this role is difficult for all of the following reasons:

  • Varied types of data available and the resultant multitude of analyses that can be employed
  • A skill set that includes programming capability, quantitative methods, investigative and modeling orientation
  • The ability to understand what is meaningful and what is not
  • Need to have sufficient domain knowledge, not be quant-for-hire
  • The ability to communicate complex subjects to others who lack the background in the tools and methods employed

I mentioned engineers above.  Engineers come to work with a solid grounding in the area of their choice, but no real practical experience, and typically no experience at all in the business of their employer. They learn as they go. In fact, there is even a professional designation for engineers that demonstrates they have the skill, training and practitioner’s experience to be a senior engineer – Professional Engineer (usually abbreviated as PE).

Another model for recruiting and nurturing professionals for this role, instead of competing for a small pool of PhD’s who may be overqualified and unfulfilled with the work, is the way insurance company grow their own actuaries (full disclosure, I have an actuarial background). There are two major actuarial organizations, The Society of Actuaries and the Casualty Actuarial Society. Both organizations administer comprehensive (actually, sort of grueling) certification programs that start with most of an undergraduate math degree and proceed to all aspects of probability, statistics and the insurance business itself.  The series of exams can take 5-10 years to complete, and most insurance companies offer time off for study as well as on-the-job mentoring. Two things about this are key: first, a Fellow in either society demonstrates not only thorough grounding in quantitative methods, but also, and perhaps even more importantly, a true understanding of the workings of the enterprise as well as the entire industry.

There are tons of gimmicky professional “certifications,” but actuarial fellowship, Professional Engineer certification, even CPA, are all rigorous, practitioner-oriented programs. Analytics is looming in importance and is deserving of something similar.

Companies can’t expect universities to provide this kind of education. It’s obvious that skill with data, and analytics, are central to most if not all organization’s success. It’s time to get serious about it. Call them data scientists if you will, but you have to participate in their learning. They don’t grow on trees.

Some sort of legitimate professional certification is needed. But until then, companies need to take grooming and nurturing these professionals seriously.

Certified Data Scientist? I don’t think so. Fellow of Quantitiative Analysts Society? Better. Data Alchemist? I like that, but it’s not really comprehensive enough. Let me have your suggestions. 

This discussion continues on Twitter. Follow me there @neilraden

TAGGED:analyticsData ScientisteducationhadoopMapReducequantitativetraining
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

how to use social media analytics
AnalyticsExclusiveSocial DataSocial Media Analytics

How To Use Social Media Analytics To Increase Your Business Success

6 Min Read
big data and Hadoop guide
AnalyticsBig DataExclusiveHadoopSoftware

How Big Data and Hadoop Training Programs Can Make a Big Difference

5 Min Read

Analytics: Not About Saving Time

7 Min Read
data science upskilling
Big Data

Upskilling for Emerging Industries Affected by Data Science

10 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?