Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Big Data Analytics: The Future is Already Here
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Big Data Analytics: The Future is Already Here
AnalyticsBusiness IntelligencePredictive AnalyticsUnstructured Data

Big Data Analytics: The Future is Already Here

Editor SDC
Editor SDC
6 Min Read
SHARE

As the Big Data movement gains momentum we’ll find more and more reasons to rethink how we actually create value out of data. Not just customer data, but operational data as well. Let’s look at a few predictions for 2012 and then I’ll try to make sense of what we’re seeing at Neural ID.

As the Big Data movement gains momentum we’ll find more and more reasons to rethink how we actually create value out of data. Not just customer data, but operational data as well. Let’s look at a few predictions for 2012 and then I’ll try to make sense of what we’re seeing at Neural ID. The future, as they say, is already here, we just have to know where to look for it.

Harlan Smith’s assessment of where Big Data is headed is quite insightful. In particular, he singles out the following industries:

  • Supply chain, logistics, and manufacturing — With RFID sensors, handheld scanners, and on-board GPS vehicle and shipment tracking, logistics and manufacturing operations produce vast quantities of information offering significant insight into route optimization, cost savings and operational efficiency.
  • Online services and web analytics — Internet companies invented Big Data specifically to handle processing information at Internet scale. Implementation of these analytical platforms is now viable for smaller online services companies to provide an edge over competitors for advertising, customer intelligence, capacity planning and more. Companies who don’t offer online services but do have an ecommerce or other online presence will benefit greatly from understanding customer behavior and buying patterns via clickstream, cohort analysis and other advanced analytics.
  • Financial services — Financial markets generate immense quantities of stock market and banking transaction data that can help companies maximize trading opportunities or identify potentially fraudulent charges, among various other uses. New regulations also require detailed financial records to be maintained for longer periods.
  • Energy and utilities — Smart instrumentation such as “smart grids” and electronic sensors attached to machinery, oil pipelines and equipment generate streams of incoming data that must be stored and analyzed quickly to uncover and fix potential problems before they result in costly or even disastrous failures.
  • Media and telecommunications — Streaming media, smartphones, tablets, browsing behavior and text messages are captured at ever-increasing rates all over the world, representing a potential treasure trove of knowledge about user behavior and tastes.
  • Health care and life sciences — Electronic medical records systems are some of the most data-intensive systems in the world and making sense of all this data to provide patient treatment options and analyze data for clinical studies can have a dramatic effect for both individual patients and public health management and policy.
  • Retail and consumer products — Retailers can analyze vast quantities of sales transaction data to unearth patterns in user behavior and monitor brand awareness and sentiment with social networking data.

Of course, it’s right to look at the vertical applications of the technology.  The enterprise is learning to “sense and respond” as Big Data takes it’s place at the business table. But there’s more. The folks at O’Reilly have put together a guide to the key issues in the Big Data universe:

More Read

Image
Automation and the Danger of Lost Knowledge
How Cryptocurrency Is Benefiting From Big Data Analytics
The Case for a ‘New IT’ Operating Model
How Data Mining Tools Break Through Misconceptions To Optimize SEO
Christmas Tree Analytics

Data issues — The opportunities and ambiguities of the data space are evident in this segment’s discussions around privacy, the implications of data-centric industries, and even in the debate about the phrase “data science” itself.

The application of data — An exploration of data applications showed that this segment is quickly expanding to include everything from data startups to established enterprises to media/journalism to education and research. A “data product” can emerge from virtually any domain.

Data science and data tools — The tools and technologies that drive data science are, of course, essential to this space, but the varied techniques being applied are also key to understanding the big data arena.

The business of data — This is all about the actions connected to data — the process of finding, organizing, and analyzing data that allows organizations of all sizes to improve and innovate.

What we’re focused on is the intersection of the business and the data – particularly unstructured data. Inductive Analytics is a key solution need for these emerging trends. The only way to deal with the key challenges of big data outlined above is by addressing data completeness, data reduction and intelligent value creation – addressing the analysis gap between the sensor and the user.

Here are some examples:

  • Retail – the use of intelligent learning to improve compliance moniitoring, crowd data sourcing, loyalty and other key services enabled through inductive analytics.
  • Food and Beverage –  automated identification for CPG industries in demand-driven supply chain applications.
  • Manufacturing – machine learning employed in trending, stability and quality assurance.
  • Automotive – quality assurance on the assembly line.
  • BioPharma – can’t say too much about what we’re doing here yet, but stay tuned!

What I’m saying is 2012 will bring us a stunning variety of cutting edge intelligent analytic applications across multiple industries.  The future is already here.  

TAGGED:artificial intelligencebig datamachine learning
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Energy Efficiency
Big DataExclusive

New Report: Big Data is the Key to Energy Efficiency

4 Min Read
data science jobs
Machine Learning

Machine Learning Interview Questions to Land the Perfect Data Science Job

6 Min Read
machine learning and contract management
ExclusiveMachine Learning

How Machine Learning And Contract Management Go Together

7 Min Read
machine learning for career growth
ExclusiveJobsMachine Learning

Why Tech Pros Are Turning To Machine Learning For Career Growth

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?