Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Top 10 Root Causes of Data Quality Problems: Part 4
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Top 10 Root Causes of Data Quality Problems: Part 4
Data MiningData QualityData Visualization

Top 10 Root Causes of Data Quality Problems: Part 4

SteveSarsfield
SteveSarsfield
4 Min Read
SHARE

Part 4 of 5: Data Flow

Part 4 of 5: Data Flow
In this continuing series, we’re looking at root causes of data quality problems and the business processes you can put in place to solve them.  In part four, we examine some of the areas involving the pervasive nature of data and how it flows to and fro within an organization.

Root Cause Number Seven: Transaction Transition

More and more data is exchanged between systems through real-time (or near real-time) interfaces. As soon as the data enters one database, it triggers procedures necessary to send transactions to other downstream databases. The advantage is immediate propagation of data to all relevant databases.

However, what happens when transactions go awry? A malfunctioning system could cause problems with downstream business applications.  In fact, even a small data model change could cause issues.

Root Cause Attack Plan

More Read

Predictive Analytics and Politics – Part 2
Harnessing Collective Intelligence in Decision Making through Big Data Analytics
By collecting previous crime statistics and external factors —…
Building a Knowledge Hub
From Master Data to Master Graph
  • Schema Checks – Employ schema checks in your job streams to make sure your real-time applications are producing consistent data.  Schema checks will do basic testing to make sure your data is complete and formatted correctly before loading.
  • Real-time Data Monitoring – One level beyond schema checks is to proactively monitor data with profiling and data monitoring tools.  Tools like the Talend Data Quality Portal and others will ensure the data contains the right kind of information.  For example, if your part numbers are always a certain shape and length, and contain a finite set of values, any variation on that attribute can be monitored. When variations occur, the monitoring software can notify you.


Root Cause Number Eight: Metadata Metamorphosis

Metadata repository should be able to be shared by multiple projects, with audit trail maintained on usage and access.  For example, your company might have part numbers and descriptions that are universal to CRM, billing, ERP systems, and so on.  When a part number becomes obsolete in the ERP system, the CRM system should know. Metadata changes and needs to be shared.

In theory, documenting the complete picture of what is going on in the database and how various processes are interrelated would allow you to completely mitigate the problem. Sharing the descriptions and part numbers among all applicable applications needs to happen. To get started, you could then analyze the data quality implications of any changes in code, processes, data structure, or data collection procedures and thus eliminate unexpected data errors. In practice, this is a huge task.

Root Cause Attack Plan

  • Predefined Data Models – Many industries now have basic definitions of what should be in any given set of data.  For example, the automotive industry follows certain ISO 8000 standards.  The energy industry follows Petroleum Industry Data Exchange standards or PIDX.  Look for a data model in your industry to help.
  • Agile Data Management – Data governance is achieved by starting small and building out a process that first fixes the most important problems from a business perspective. You can leverage agile solutions to share metadata and set up optional processes across the enterprise.

This post is an excerpt from a white paper available here. My final post on this subject in the days ahead.

Covering the world of data integration, data governance, and data quality from the perspective of an industry insider.
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

financial data
Engineering Trust into Enterprise Data with Smart MDM Automation
Big Data Exclusive
christina wocintechchat com 6dv3pe jnsg unsplash
How CIS Credentials Can Launch Your AI Development Career
Exclusive News
big data analytics in transporation
Turning Data Into Decisions: How Analytics Improves Transportation Strategy
Analytics Big Data Exclusive
AI and fund manager software
AI And The Acceleration Of Information Flows From Fund Managers To Investors
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Is My Data Really Mine?

7 Min Read

Multi-Lingual Text Analysis- A Plan To Action from #SMAS12

5 Min Read
Data Visualisation
Data Visualization

How to Bring Presentation Data to Life with Powered Template

8 Min Read
challenge assumptions with big data and Hadoop
AnalyticsBig DataBusiness IntelligenceCloud ComputingCollaborative DataData ManagementData MiningData QualityData VisualizationData WarehousingHadoopHardwareITMapReduceOpen SourceSocial DataSoftwareSQLUnstructured DataWorkforce Data

A Complete Guide to Overcoming Executives’ Concerns about Hadoop

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?