Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Customer Churn and Retention
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > CRM > Customer Churn and Retention
CRMData MiningPredictive Analytics

Customer Churn and Retention

Sandeep Raut
Sandeep Raut
4 Min Read
SHARE
In any business competitors are always looking to grab your customers, and many customers are on the lookout for a better deal. Customer attrition rates range from 7% to 40% annually in various industries. Slowing this customer “churn” rate by as little as 1% can add millions of dollars to any sizable company’s bottom line.
In any business competitors are always looking to grab your customers, and many customers are on the lookout for a better deal. Customer attrition rates range from 7% to 40% annually in various industries. Slowing this customer “churn” rate by as little as 1% can add millions of dollars to any sizable company’s bottom line. As it is already known customer acquisition is 4 to 5 times more expensive than to retain them, an effective customer retention strategy is crucial to a company’s success. 
Marketing departments are traditionally focused on acquiring new customers than retaining existing once. But after the economic recession, when finding new customers is especially challenging, customer retention has become a major corporate priority.
While it is the fact that churn will always exist, ensuring that it is managed effectively is a key to assure profit margins & sustainable business growth.
By predicting which customers are likely to leave, companies can reduce the rate of churn by offering customers new incentives or packages to stay. By understanding reasons for churn, companies can improve their services and packages offered. Apart from that, it gives the best strategy for them in terms of cost and effort by decreased total cost of retention campaigns and increased the effectiveness campaigns.
There are multiple data mining techniques which can be used for churn prediction.
Just to step back, Data mining is a process of extraction and analysis of patterns, relationships and useful information from massive databases. It usually involves four classes of tasks which are the classification, clustering, regression and association rule learning.
Here are the typical steps taken to address Customer Churn & Retention:
·         Define “Customer churn” as it various from industry to industry
·         Create a single Customer view
o   Collect every Customer touch point data – billing data, transaction records, demographic details, Call center records, Credit history
·         Understand the customer behavior
o   Profiling & segmenting them on various attributes
o   Customer value analysis or Life Time Value
·         Identify the Customers with highest chances to churn
o   Predictive Churn model
o   Typical techniques used are Regression, decision trees, survival analysis
·         Discover what are major reasons for churn
o   Product or Service related issues
o   Demographic constraints
o   Better deals from competitors
·         Setup targeted retention campaigns for high value Customers who are likely to leave
o   Customized promotions
o   Next best offer strategy
o   Location based real time offers
·         Measure the campaigns effectiveness for continuous improvement
o   What is the retention rate or how much Churn % has come down
Today social media analytics including Speech analytics is becoming a key aspect to analyze Customer sentiments which helps in finding out the reasons for Customer churn. This involved capturing & analyzing unstructured data from customer touch points like Customer support call notes, chats, email exchanges & scraping customer comments from Facebook, Twitter, blogs etc.
It is very important to go beyond just predicting Customers who are likely to leave & identify the reasons for churn to effectively drive the targeted campaigns to retain those customers.
Share This Article
Facebook Pinterest LinkedIn
Share
BySandeep Raut
Follow:
Founder & CEO at Going Digital - Digital Transformation, Data Science, BigData Analytics, IoT Evangelist

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Twitter Analytics: Words that make a difference

4 Min Read

Google Experimenting with Social Search

5 Min Read

A powerful computing tool that allows scientists to extract…

1 Min Read

Exploring Technological Horizons with Recorded Future

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?