Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Business Rules Algorithms research from Forrester
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > CRM > Business Rules Algorithms research from Forrester
Business IntelligenceCRMData MiningPredictive Analytics

Business Rules Algorithms research from Forrester

JamesTaylor
JamesTaylor
3 Min Read
SHARE

Mike Gualtieri published a nice piece on business rules engine algorithms last July that I wanted to point out to my readers. Mike summarizes the mainstream rules engine algorithms into those that deliver inferencing at run time, those that execute…


Mike Gualtieri published a nice piece on business rules engine algorithms last July that I wanted to point out to my readers. Mike summarizes the mainstream rules engine algorithms into those that deliver inferencing at run time, those that execute sequentially and those that execute sequentially but have compile-time algorithms to sequence rules correctly.

While I have a few comments on Mike’s report, I was struck both by its measured tone and a great piece of advice:

Let Authoring Flexibility Drive Your Algorithm Decision

This is key. The extent to which the tool allows you to write authors the way you need to write them, the way your business users need to write them, is what matters. It is the flexibility and agility that business rules give you that is the primary value driver. Pick your vendor based on how the rule editing and management environment will work for you. The capabilities of the vendor’s algorithm(s) will impact this but they are just part of the puzzle – the kind of editing and management environment will matter more. Most of the major rule vendors will do a good job on performance, if
you use the tools the way they are intended and don’t try and force-fit
your previous programming experience too much.

More Read

Big Data For Big Weather
The Social Solutions Model
5 Innovative and Diverse Uses of Big Data
Non-Consensual User Data Tests Violate Fundamental Rights
The Sales Forecast Requires Commitment not Status Quo

If you are interested in this topic, buy the report (it’s a good one). I would just add a couple of things:

  • I think he under-calls the potential for inferencing engines to run
    faster than sequential when a very large number of rules exist but
    where each transaction only fires a tiny percentage (common in
    regulatory compliance) for instance
  • Some vendors allow different algorithms to be used in different steps in a decision, a useful feature
  • I have never found a Rete user who had trouble recreating a bug. The data in a transaction determines the sequence of execution of rules and the same data/ransaction will reliably drive the same sequence of execution. Sure different data results in a different order of execution but that does not have any impact on recreating a bug
  • I think the ability to integrate predictive analytics with business rules is already bringing new algorithms to bear. A decision tree built using a genetic algorithm might execute the same way any other decision tree does but it shows the results of the new algorithm just the same.


Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

data perspective
Big Data

Tackling Bias in AI Translation: A Data Perspective

9 Min Read

Project Checkmate A research collaboration (with the Scripps…

3 Min Read

Decision Management focuses on Microdecisions for Macro Impact

3 Min Read

The Technology of Decision Management

1 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?