Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: What does IBM Watson mean for Decision Management and Analytics?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > What does IBM Watson mean for Decision Management and Analytics?
Predictive Analytics

What does IBM Watson mean for Decision Management and Analytics?

JamesTaylor
JamesTaylor
5 Min Read
SHARE

 

Copyright © 2011 http://jtonedm.com James Taylor

 

More Read

Putting predictive analytics to work with decision management #paw
Storing and Mapping Your Life in 3D
Mobile Advertising, Clustering Algorithms, and Your Ticket for a Free Ride
Why This Snaky Python Language?
5 Steps to Setting your Big Data Goals

Copyright © 2011 http://jtonedm.com James Taylor

I have been thinking about IBM’s Watson for a while now. I met some of the team very early in their development and here we are today with Watson slugging it out on TV. To do this it must decompose the question, generate multiple hypotheses and then score them before synthesizing an answer and associated confidence. Watson has a number of interesting elements of relevance to those of us working with analytics and decision management but the linkage is not as direct as you might think. First, remember that IBM has not listed its predictive analytics technology (SPSS) or its optimization technology (ILOG) or business rules (ILOG) as part of the Watson solution stack – the focus has been on the hardware on which it runs and the natural (or, given we are talking about Jeopardy questions here, unnatural) language processing to figure out the question. Nevertheless Watson has some critical lessons to teach us about applying analytics more generally.

  1. Watson uses many different techniques to assess the evidence and data it has. This is analogous to the use of ensemble models in analytics (combining the analytic predictions of multiple techniques to create an ensemble model that is more accurate than the component pieces). This is increasingly widely seen as an analytic best practice as Dean Abbott discussed in the webinar he and I did recently – 10 Best Practices in Operational Analytics.
  2. The confidence of its predictions is key to Watson’s success – it calculates the confidence of many answers and uses this information in synthesizing an answer. Given that predictive analytics “turn uncertainty about the future into usable probabilities” it is important to always understand how confident you are in a prediction before you use it. Indeed one of the reasons for using a business rules management system to implement analytics is that it allows you to selectively implement only those elements, of a decision tree say, in which you are suitably confident (as Dean discussed in this presentation at Predictive Analytics World a little while back.
  3. Speed – Watson demonstrates that real time is possible, even for very complex problems. The days when analytics could only be applied in batch or by scoring the database overnight are long gone. You should be thinking in terms of real-time scoring with the data available at the point of decision and nothing less. Your problems are likely to be much simpler than Watson’s so you won’t need anything like the hardware involved either.
  4. Incremental improvement over time is critical. When Watson was first put together it could not compete with Jeopardy winners. But the great thing about analytics, especially analytics applied to a decision you make a lot (like answering Jeopardy questions if you are Watson) is that allows you to test new approaches, learn from those tests, accumulate data about what works and what does not and get better. This continuous improvement mindset is what you need in any application of analytics to operational systems

A final note. There are those who say that because analytics are not right 100% of the time and because the future is not completely predictable, predictive analytics should not be used. Remember though that even the most successful Jeopardy winners don’t get every question they answer right nor do they even try to answer every question – even grand champions are only managing 90% accuracy on about 65% of the questions. If you could come up with an analytic decision that was better than the human who would otherwise make the decision two thirds of the time then you too could be a winner.

There’s lots more about Watson at ibm.com/innovation/us/watson/

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security
ai for making lyric videos
How AI Is Revolutionizing Lyric Video Creation
Artificial Intelligence Exclusive
intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive
dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

San Diego Forum on Analytics — review

6 Min Read
Image
AnalyticsBig DataBusiness IntelligenceCloud ComputingData MiningHadoopMapReducePredictive AnalyticsUnstructured Data

The Big Data Uprising: It’s Not About Big Or Data

12 Min Read

Sense and Respond and the New Way of Selling

5 Min Read
forecasting stock market
AnalyticsBig DataBusiness IntelligenceDecision ManagementPredictive Analytics

Forecasting the Stock Market: Lessons Learned

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?