Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Practical Data Analytics – When is “close enough” good enough?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Practical Data Analytics – When is “close enough” good enough?
Business Intelligence

Practical Data Analytics – When is “close enough” good enough?

Brett Stupakevich
Brett Stupakevich
3 Min Read
SHARE

amazing girl quits 1 300x199 photo (data analytics)

amazing girl quits 1 300x199 photo (data analytics)

Data analytics isn’t always about getting the right answer – it’s often about getting useful answers that help make the best decisions. There are many instances where the right answer doesn’t even exist. An example is if we’re using social data or a predictive model.  So how do we know when “close enough” is good enough?

More Read

Data Accumulation
Performance Lag between Data Accumulation and Utilization
Forensic AI Technology is Doing Wonders for Law Enforcement
Collaborative BI – What Women and Men Want
Seven Ways to Rejuvenate Your Marketing Database
Using Data from OKRs To Improve Business Growth

Let’s say you are using data analytics to help prevent undesirable turnover of high potential employees in your organization. You have a model that predicts which high potential employees will quit next. So, the idea is to alert management so they can intervene.  In this case, there is no right answer – until someone quits, and then it’s too late. The model provides an indication along some continuum of the likeliness to quit.  You will draw a line on that continuum and intervene for every employee who falls above the line.  Hopefully you have the model inputs and an understanding of how the model works.

If the answer from the model is low, medium or high, is that “close enough” to help you decide where to place the line? What if the model produces a whole number from 0 to 10? Can you make a decision about where to intervene?  What if it provides half-steps (8.5, 9.0, 9.5)? What about tenths (8.1, 8.2, 8.3)? Hundredths (8.01`, 8.02, 8.03)? Pretty soon you’ll reach a point where an increase in precision doesn’t really affect your decision, and you’ve found your definition of “good enough”.

If the model doesn’t provide acceptable precision, you can assess the cost of increasing precision against the cost and consequence of intervening unnecessarily. Once you get acceptable precision, where you place the line will be a balance between your tolerance for risk (someone quits without intervention) and the cost and consequence of intervening unnecessarily.

As with any kind of change management, your success will be heavily influenced by the way you communicate this to others. If you think some users won’t find the results “good enough”, you should manage their expectations and either discuss the process you’ll take to improve the results, or discuss the economics of why improving the results will cost more than the problem is worth. In either case, it’s more likely that a bad decision will be due to a lack of understanding than a lack of information.

Steve McDonnell
Spotfire Blogging Team

Image Credit:  thechive.com

TAGGED:data analytics
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive
warehousing in the age of big data
Top Challenges Of Product Warehousing In The Age Of Big Data
Big Data Exclusive
car expense data analytics
Data Analytics for Smarter Vehicle Expense Management
Analytics Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

big data helping Russian car sharing business
Big Data

How Big Data Helped Russia Become A Leader In Car Sharing

7 Min Read
data analytics helps property management
AnalyticsBig DataData QualityExclusive

Data Analytics Helps Property Management Companies Join The 21st Century

5 Min Read

How to Become a Data Scientist

4 Min Read
seo in the age of data analytics
Analytics

Link Building Basics For SEO In The Age Of Data Analytics

10 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?