Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Unusual Data Quality Problems
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Unusual Data Quality Problems
Uncategorized

Unusual Data Quality Problems

SteveSarsfield
SteveSarsfield
6 Min Read
SHARE

When I talk to folks who are struggling with data quality issues, there are some who are worried that they have data unlike any data anyone has ever seen. Often there’s a nervous laugh in the voice as if the data is so unusual and so poor that an automated solution can’t possibly help.

Yes, there are wide variations in data quality and consistency and it might be unlike any we’ve seen. On the other hand, we’ve seen a lot of unusual data over the years. For example:

  • A major motorcycle manufacturer used data quality tools to pull out nicknames from their customer records. Many of the names they had acquired for their prospect list were from motorcycle events and contests where the entries were, shall we say, colorful. The name fields contained data like “John the Mad Dog Smith” or “Frank Motor-head Jones”. The client used the tool to separate the name from the nickname, making it a more valuable marketing list.
  • One major utility company used our data quality tools to identify and record notations on meter-reader records that were important to keep for operational uses, but not in the customer billing record. Upon analysis of the data, the company noticed random text like “LDIY” and “…


When I talk to folks who are struggling with data quality issues, there are some who are worried that they have data unlike any data anyone has ever seen. Often there’s a nervous laugh in the voice as if the data is so unusual and so poor that an automated solution can’t possibly help.

More Read

Check Out TunkRank.com!
MDM Streamlines the Supply Chain
SOA Manifesto: Manes explains manifesto’s aims
SAP coming out from behind the Clouds?
Guest Post by Brent Arslaner: The Next Generation of Lead Generation

Yes, there are wide variations in data quality and consistency and it might be unlike any we’ve seen. On the other hand, we’ve seen a lot of unusual data over the years. For example:

  • A major motorcycle manufacturer used data quality tools to pull out nicknames from their customer records. Many of the names they had acquired for their prospect list were from motorcycle events and contests where the entries were, shall we say, colorful. The name fields contained data like “John the Mad Dog Smith” or “Frank Motor-head Jones”. The client used the tool to separate the name from the nickname, making it a more valuable marketing list.
  • One major utility company used our data quality tools to identify and record notations on meter-reader records that were important to keep for operational uses, but not in the customer billing record. Upon analysis of the data, the company noticed random text like “LDIY” and “MOR” along with the customer records. After some investigation, they figured out that LDIY meant “Large Dog in Yard” which was particularly important for meter readers. MOR meant “Meter in Right, which was also valuable. The readers were given their own notes field, so that they could maintain the integrity of the name and address while also keeping this valuable data. IT probably saved a lot of meter readers from dog bite situations.
  • Banks have used our data quality tools to separate items like “John and Judy Smith/221453789 ITF George Smith”. The organization wanted to consider this type of record as three separate records “John Smith” and “Judy Smith” and “George Smith” with obvious linkage between the individuals. This type of data is actually quite common on mainframe migrations.
  • A food manufacturer standardizes and cleanses ingredient names to get better control of manufacturing costs. In data from their worldwide manufacturing plants, an ingredient might be “carrots” “chopped frozen carrots” “frozen carrots, chopped” “chopped carrots, frozen” and so on. (Not to mention all the possible abbreviations for the words carrots, chopped and frozen.) Without standardization of these ingredients, there was really no way to tell how many carrots the company purchased worldwide. There was no bargaining leverage with the carrot supplier, and all the other ingredient suppliers, until the data was fixed.

Not all data quality solutions can handle all of these types of anomalies. They will pass these “odd” values without attempting to cleanse them. It’s key to have a system that will learn from your data and allow you to develop business rules that meet the organization’s needs.

Now there are times, quite frankly, when data gets so bad, that automated tools can do nothing about it, but that’s where data profiling comes in. Before you attempt to cleanse or migrate data, you should profile it to have a complete understanding of it. This will let you weigh the cost of fixing very poor data against the value that it will bring to the organization.

Covering the world of data integration, data governance, and data quality from the perspective of an industry insider.

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive
blockchain for ICOs
The Role of Blockchain in ICO Fundraising
Blockchain Exclusive
ai in business
How AI Helps Businesses Discover Specialized Niches
Exclusive Marketing

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Host Analytics Modeling Cloud Simplifies Planning and Reporting

9 Min Read

A first for me…

5 Min Read

IoT Field Notes: Who Are You Disrupting?

6 Min Read

Strange campaign from Netezza [4]

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?