Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Why BI Development is Different
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Why BI Development is Different
Business Intelligence

Why BI Development is Different

EvanLevy
EvanLevy
4 Min Read
SHARE

When companies initially embark on their BI development initiatives, they often underestimate its complexity. Some begin BI in the first place because their packaged applications don’t deliver the reporting functionality they need. Others embark on BI because the data they need to analyze is located in multiple, disparate application systems. While positioning a data warehouse to integrate and store historical data from packaged applications, like ERP or CRM, is a reasonable and proven approach, many companies try to repurpose the development methods associated with these packages to deliver BI.

But comparing development methods and skill sets for these two divergent types of systems is like comparing picking apples to making a fruit salad. The fact is the methodology for building a data warehouse is very similar to traditional code development using lower-level programming languages. To be successful building a data warehouse, a team should have skills in business requirements gathering, functional requirements definition, specification and design, data modeling, database design, as well as all the skills associated with loading the data and coding the application. This is clearly…

When companies initially embark on their BI development initiatives, they often underestimate its complexity. Some begin BI in the first place because their packaged applications don’t deliver the reporting functionality they need. Others embark on BI because the data they need to analyze is located in multiple, disparate application systems. While positioning a data warehouse to integrate and store historical data from packaged applications, like ERP or CRM, is a reasonable and proven approach, many companies try to repurpose the development methods associated with these packages to deliver BI.

More Read

Image
Handling BI Modernization in Secure Environments
IBM and ILOG – What Else?
6 Big Business Intelligence Trends of 2017
Thinking Machines At Work: How Generative AI Models Are Redefining Business Intelligence
RuleSpeak – some useful guidelines for writing rules

But comparing development methods and skill sets for these two divergent types of systems is like comparing picking apples to making a fruit salad. The fact is the methodology for building a data warehouse is very similar to traditional code development using lower-level programming languages. To be successful building a data warehouse, a team should have skills in business requirements gathering, functional requirements definition, specification and design, data modeling, database design, as well as all the skills associated with loading the data and coding the application. This is clearly a complex mix of technical knowledge to deliver a business solution spanning everything from storage allocation to workload management to systems integration to application programming. The fact is you’re building something from scratch.

The packaged application world is complex in its own right, but it’s also very different, as are the skills and methodologies involved in building these environments. Most IT organizations accustomed to implementing packages use third-party firms to install and configure these systems. Their staff members don’t have the necessary skills to build these solutions, and often require training and multiple years of hands-on use to be proficient in supporting these systems. In addition, most organizations forget that implementing their business applications typically takes a year or longer.

When was the last time you were allowed a full year to implement your data warehouse? And was your team even half the size of the packaged app’s development team?

Link to original post

TAGGED:crmerp
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

SaaS ERP Making Inroads

5 Min Read

Does Data Quality Matter in Social Media?

4 Min Read

First Look – Unica

7 Min Read

ERP’s Future Is Hybrid Cloud

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?