Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Mate Math: Analytics for Dating
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Mate Math: Analytics for Dating
Predictive Analytics

Mate Math: Analytics for Dating

RamaRamakrishnan
RamaRamakrishnan
6 Min Read
SHARE

A recent article in the New York Times describes a dating site called OkCupid started by four Harvard math graduates and their use of analytics to help people achieve dating success.

Using analytics to match people isn’t a new idea. eHarmony and Match.com have been doing it for years. So what’s new here? Is it an example of Monday Morning Analytics (or should I say Friday Evening Analytics)? Let’s find out.

First, some background. In dating sites, each user creates a profile, typically consisting of a photo and some self-commentary. Users learn about others by looking at their profile photos and reading the associated self descriptions. If a profile is effective, the user may find dating success. If it isn’t, the user may end up watching infomercials (Snuggies, anyone?) on Saturday night.  In other words, a profile matters.

OkCupid’s insight? The realization that every user makes a number of implicit decisions when she creates her profile. If we view the profile as the result of a set of decisions made by the user, perhaps we can help the user achieve dating success by optimizing those decisions.

More Read

Solving Supply Chain Risks [INFOGRAPHIC]
DIALOG IBM and ILOG – the strategic perspective
SMB Report: Big Data is the Biggest Disruptor in the Restaurant Industry
A story about the power of rules to improve analytic decisions
Nine Business Intelligence Megatrends for 2009 Open source…

Take the user’s photo for example…

A recent article in the New York Times describes a dating site called OkCupid started by four Harvard math graduates and their use of analytics to help people achieve dating success.

Using analytics to match people isn’t a new idea. eHarmony and Match.com have been doing it for years. So what’s new here? Is it an example of Monday Morning Analytics (or should I say Friday Evening Analytics)? Let’s find out.

First, some background. In dating sites, each user creates a profile, typically consisting of a photo and some self-commentary. Users learn about others by looking at their profile photos and reading the associated self descriptions. If a profile is effective, the user may find dating success. If it isn’t, the user may end up watching infomercials (Snuggies, anyone?) on Saturday night.  In other words, a profile matters.

OkCupid’s insight? The realization that every user makes a number of implicit decisions when she creates her profile. If we view the profile as the result of a set of decisions made by the user, perhaps we can help the user achieve dating success by optimizing those decisions.

Take the user’s photo for example. How many decisions do you think are implicitly made in taking a photograph? Here’s OkCupid’s take:

  • Facial Attitude. Is the person smiling? Staring straight ahead? Doing that flirty lip-pursing thing?
  • Photo Context. Is there alcohol? Is there a pet? Is the photo outdoors? Is it in a bedroom?
  • Skin. How much skin is the person showing? How much face? How much breasts? How much ripped abs?

You get the idea.

OkCupid took 7000 photos from its user community and tagged each one with these attributes. The next step was to associate a measure of dating success with each photo. For women’s photos, they went with “new messages received per active month on the site”. For men, it was “women met per attempt” (more details behind these metrics here).

With the data now ready, OkCupid ran what appears to be analyses of the “Excel pivot table” variety (details). While this is not sophisticated,  the results seem directly actionable.

If you’re a man, don’t smile in your profile picture, and don’t look into the camera. If you’re a woman, skip photos that focus on your physical assets and pick one that shows you vacationing in Brazil or strumming a guitar.

See what I mean?

I think the idea of viewing the profile as the outcome of a set of decisions and seeking to optimize those decisions is wonderful. However, the recommendations may not be all that effective. And even if they are, they are likely to stop working. Here’s why.

Without more information on how OkCupid handled a number of key issues, I don’t know how much faith to place in the advice. For example, how did they control for the intrinsic facial attractiveness of the person in the photo? Perhaps that’s the true driver of dating success but because it was absent in the data, some of the other variables were spuriously given the “credit”? If this is true, not-very-attractive men can try as hard as they can to look grimly away from the camera, but it isn’t going to help.

Assuming that I am wrong and the recommendations are effective, they seem to contain the seeds of their own destruction. If the majority of OkCupid users starts following the recommendations, the profiles will start looking the same over time and the “stand out” appeal of the optimized profiles will be gone.

Running the analytics again won’t help either – with hardly any variation in the decisions that represent the profiles, the distinction between winning and losing decisions will be miniscule and there won’t be any signal to tease out of the noise.

The bottomline: Neat problem framing. So-so analytics.

Link to original post

TAGGED:analytics
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive
dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Can Business Analytics Outperform Humans at Multitasking?

6 Min Read

Decision engines in financial services

6 Min Read
Image
Big Data

Big Data and the Rise of Instant Analytics: The Word

5 Min Read

Text Analytics Pros Daily

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?