Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Ten ways to build a wrong scoring model
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Ten ways to build a wrong scoring model
Data MiningPredictive Analytics

Ten ways to build a wrong scoring model

Editor SDC
Editor SDC
3 Min Read
SHARE

Below are some ways to build a wrong scoring model. The author doesn’t make any guarantee that if your modeling team uses one of them they will still get a correct model.

1) Over-fit the model to the sample. This over-fitting can be checked by taking a random sample again and fitting the scoring equation and comparing predicted conversion rates versus actual conversion rates. The over-fit model does not rank order: deciles with lower average probability may show equal or more conversions than deciles with higher probability scores.

2) Choose non-random samples for building and validating the scoring equation. Read over-fitting above.

3) Use Multicollinearity without business judgment to remove variables that may make business sense. This usually happens a few years after you studied — and have now forgotten — multicollinearity… 

More Read

Risk is a transactional issue, not a quarterly exercise
Why Search Engine Rank is Important
Keep Off My Big Data
Kosmix, along with DeepPeep, are example of the Deep Web , aka…
Design and Delivery Teams – Essential for Enterprise Analytics

Below are some ways to build a wrong scoring model. The author doesn’t make any guarantee that if your modeling team uses one of them they will still get a correct model.

1) Over-fit the model to the sample. This over-fitting can be checked by taking a random sample again and fitting the scoring equation and comparing predicted conversion rates versus actual conversion rates. The over-fit model does not rank order: deciles with lower average probability may show equal or more conversions than deciles with higher probability scores.

2) Choose non-random samples for building and validating the scoring equation. Read over-fitting above.

3) Use Multicollinearity without business judgment to remove variables that may make business sense. This usually happens a few years after you studied — and have now forgotten — multicollinearity.

If you don’t know the difference between Multicollinearity and Heteroscedasticity, this could be the real deal-breaker for you

4) Using legacy codes for running scoring, usually with step-wise forward and backward  regression. This usually happens on Fridays and when you’re in a hurry to make models.

5) Ignoring signs or magnitude of parameter estimates (that’s the output or the weightage of the variable in the equation).

6) Not knowing the difference between Type 1 and Type 2 errors, especially when rejecting variables based on P value.

7) Excessive zeal in removing variables. Why? Ask yourself this question every time you are removing a variable.

8) Using the wrong causal event (like mailings for loans) for predicting the future with scoring model (for mailings of deposit accounts). Or using the right causal event in the wrong environment (rapid decline/rise of sales due to factors not present in model like competitor entry/going out of business, oil prices, credit shocks sob sob sigh).

9) Over-fitting.

10) Learning about creating models from blogs and not  reading and refreshing your old statistics textbooks.

Share/Save/Bookmark

TAGGED:scoring models
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Diverse Research Datasets
The 5 Best Platforms Offering the Most Diverse Research Datasets in 2026
Big Data Exclusive
macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

More Ways to get a Scoring Model wrong

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?