Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Essential Accuracy Optimization Hacks for Machine Learning Projects
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Exclusive > Essential Accuracy Optimization Hacks for Machine Learning Projects
ExclusiveMachine Learning

Essential Accuracy Optimization Hacks for Machine Learning Projects

Machine learning algorithms need to be carefully optimized to provide the highest possible benefit.

Ryan Kh
Ryan Kh
6 Min Read
machine learning accuracy hacks
Shutterstock Photo License - By maxuser
SHARE

Improving the accuracy of a machine learning (ML) model can be quite challenging, and most data experts get stuck in this part of the process, even causing some to give up. After all, even if one were to apply all the things they know about machine learning, they cannot guarantee an improvement in the machine learning model. 

Contents
  • How Does Accuracy Work?
  • 1. Hyperparameter Tuning
  • 2. Feature Selection and Engineering
  • 3. Imputation
    • Conclusion

What’s worse, if you want to make an accurate machine learning model, you should aim for at least 90% accuracy, which is rarely possible for a few programmers to handle, much less for a single person developing the algorithm on their own. So, before anything else, you might want to know more about accuracy in machine learning. 

How Does Accuracy Work?

Accuracy in machine learning is also known as the error rate. Basically, an ML model’s accuracy is a metric denoting the percentage of correct predictions in test data. 

You can easily measure an ML model’s accuracy by dividing the correct predictions by the total number of predictions. For instance, if there are 20 data points, and the algorithm successfully predicted and classified 16 of them, the algorithm has an accuracy of 80%. Now the problem is that your goal is 90%. 

More Read

ai in ecommerce
Benefits of Using Blazor Tool to Grow Your eCommerce Platform
Business Intelligence: Gamification as a Strategic Tool for Organizations
Data Warehousing: Lessons We Have Failed to Learn
Why the Best Accident Lawyers Are Using AI
How Data-Driven Brands Can Use PowerShell Invoke-WebRequests

It may not be easy, but data science tasks are now a lot more doable than before, so even you can do it if you put your all into it. Besides, with the following accuracy optimization hacks, you should at least get a better chance at achieving a high accuracy machine learning model. 

1. Hyperparameter Tuning

Every machine learning model’s primary driving force is an algorithm–a program that determines how data is classified and handled. 

If an algorithm can classify data correctly most of the time, that means it’s accurate. Otherwise, the algorithm has relatively low accuracy. Either way, different components affect the algorithm’s accuracy, one of which is the hyperparameter. 

Hyperparameters affect the behavior of machine learning algorithms. There are hyperparameter values that yield bad results and some in great results. Your goal is to determine the hyperparameter value that can lead to the best performance, and this process is what you call hyperparameter tuning. You can check out this site for more information on this matter. 

Either way, conducting hyperparameter tuning is crucial mainly because it significantly affects how the algorithm works, which may decide whether the model will be accurate or not. 

2. Feature Selection and Engineering

In machine learning, a feature refers to a property or a characteristic of a particular subject. For example, if a shoe company wants to predict their potential customers, the machine learning model features may include foot size, gender, and age. 

In other words, features usually have a lot to do with how an algorithm classifies data. 

  • Feature Selection: If you want to ensure that the algorithm will perform well in terms of accuracy, selecting the appropriate features is, therefore, crucial. You’d want to choose features that are informative and independent.

Unfortunately, not all features will be like this, and that’s where feature engineering comes in.

  • Feature Engineering: Feature engineering is basically modifying existing features or combining them so you can obtain features that are more adept at classifying datasets. If you end up with relevant features, your algorithms’ complexity can drastically decrease, resulting in higher accuracy.

The only problem is that you may encounter missing values from your datasets, making this hack harder to perform. Fortunately, you can solve this with imputation. 

3. Imputation

Suppose a column in the dataset table counts the number of customers with the gender ‘Male,’ and this column has the name ‘Number of Males.’ If a row doesn’t indicate the gender of a customer, that would mean that the ‘Number of Males’ column will show an incorrect number. 

Naturally, this would affect an algorithm’s accuracy, so it’s essential to handle missing values as soon as possible. One way to do that is by using the imputation method–the process of replacing missing data with a substitute. How you decide what that substitute would be will depend on your preferences. 

For instance, if the missing data is numerical, like height, you can try getting the average of all the height values. If the lost data is categorical, such as gender, then randomly choosing a substitute might be the best option. Either way, you should do this before anything else. 

Conclusion

Accuracy isn’t the only metrics in machine learning. You also have precision and recall, both of which are equally important in a model’s efficiency. On that note, you should also spare some time for these areas of improvement. After all, achieving a high accuracy doesn’t guarantee a successful machine learning project.

TAGGED:data scientistsmachine learning accuracy
Share This Article
Facebook Pinterest LinkedIn
Share
ByRyan Kh
Follow:
Ryan Kh is an experienced blogger, digital content & social marketer. Founder of Catalyst For Business and contributor to search giants like Yahoo Finance, MSN. He is passionate about covering topics like big data, business intelligence, startups & entrepreneurship. Email: ryankh14@icloud.com

Follow us on Facebook

Latest News

intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive
dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

shortage of data scientists
Big DataData ScienceExclusive

How A Shortage of Data Scientists in The US is Holding Back Big Data

5 Min Read
best workplaces for data scientists
Data Science

5 Best Workspaces for Data Scientists with their Own Businesses

6 Min Read
data scientist
Data ScienceExclusive

Essential Branding Guidelines For Aspiring Data Scientists

5 Min Read
data scientists
Data Science

9 Careers You Could Go into With a Data Science Degree

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?