Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Is Quantitative Data Enough to Understand Your Customers?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Quality > Is Quantitative Data Enough to Understand Your Customers?
Big DataData Quality

Is Quantitative Data Enough to Understand Your Customers?

Larry Alton
Larry Alton
6 Min Read
Quantitative Data
Shutterstock Licensed Photo - By Andrey_Popov
SHARE

Big data is becoming increasingly important for marketing and business success. About 53 percent of companies are already relying on big data-driven analytics, and that number is only set to grow.

Contents
The Advantages of Quantitative DataWhere It Falls ShortGenerating Qualitative Data

Most big data analytics programs rely on what’s known as quantitative data; these are data points that are precisely measurable, such as a “yes” or “no” binary answer, or a number on a scale from 1 to 10 as a subjective rating. Companies are spending more time and effort gathering quantitative data because of the enormous potential it has when combined with high-tech analytics platforms, but is it really enough to understand your customer base?

The Advantages of Quantitative Data

To be sure, there are some significant advantages to using quantitative data to understand your audience:

  • Data volume. First, quantitative data allows you to gather a far greater volume of data overall. Because you can gather quantitative metrics from thousands of people at once, there’s practically no limit to how much information you can pull with a single survey. More data is often better, because it helps you see a truer “average” for a given population; the bigger your sample size, the more accurate your final results are going to be.
  • Objectivity. Numerical metrics are also inherently objective. Though some respondents may be rating qualitative experiences, they’ll be doing it in a form that’s easy to measure. There’s no interpretation involved when determining your average customer’s experience is a 7/10; instead, there’s a clear number that’s immune from the influence of bias or distortion. This means your results tend to be more accurate and representational.
  • Time and cost. Quantitative data is also commonly favored because it’s relatively inexpensive, and doesn’t take much time to gather. Qualitative methods tend to require long hours of reviewing individual responses, which don’t compile or aggregate as easily as discrete, numerical data points.

Where It Falls Short

However, quantitative data falls short in three key areas:

More Read

Five More Top Data Visualizations that Persuade
4 Crucial Metrics All SaaS Companies Must Track with Big Data
5 Ways Where Data-Driven Analytics Reshaped The Software Industry
iBi – Business Intelligence Applications on the iPhone
Being human is hard
  • Engagement. Quantitative studies can make people feel like statistics, or cogs in a machine, but the real secret to customer retention and brand reputation is customer engagement. Qualitative research methods help you get to know your customers on a personal level. Participants in your study will feel more seen and heard, and you’ll get a chance to have a more personal connection with your target demographics.
  • Outliers. Compiling quantitative data also tends to mask the presence of outliers; sure, most of your target demographics spend $250 a month on groceries, but what about the few strange cases who spend $100, or $600 a month? Digging deeper into individual circumstances helps you grasp these uncommon deviations.
  • The “why” factor. Quantitative data also can’t tell you the “why” behind your customers’ qualities and answers. For example, you may learn that your customers prefer chicken to beef, but if you don’t understand why this is the case, you may not be able to effectively market to them. If you think they prefer chicken to beef because of perceived health benefits, your message may fail if the reality is that they prefer chicken because of its association with a certain dish. Only qualitative data can help you form better conclusions here.

Generating Qualitative Data

One of the best ways to compensate for the disadvantages of quantitative data is to incorporate more qualitative data into your research—in other words, data that can’t be easily numbered or categorized. These are some of the most efficient ways to do it:

  • Open-ended surveys. Using a platform like Survey Monkey, you can create a survey for your customers or target demographics that asks for more open-ended answers. For example, rather than just asking your customers to rate their overall experience from 1 to 10, you could ask them for specific comments about their experience.
  • Interviews. It’s also a good idea to pull out a handful of people from your target demographics and interview them one-on-one. It’s your chance to ask specific questions related to their perspectives and experiences, but also get a firsthand view on their behavioral tendencies and overall dispositions.
  • Representation. You can also hire a more diverse team of people, so you have broader perspectives on how your customers think and operate. After all, diverse companies are 35 percent more likely to have financial returns above industry medians.

So is quantitative data enough to truly understand your customers? Not if you want a deeper understanding of their motivations and unique perspectives. That said, it’s still one of the most cost-efficient and objective tools we have for learning more about our audiences; therefore, the best approach is one that combines the sheer volume and analytic potential of quantitative research with the insights of qualitative research to back it up.

TAGGED:big databig data analyticsquantitative dataunderstand your customers
Share This Article
Facebook Pinterest LinkedIn
Share
ByLarry Alton
Follow:
Larry is an independent business consultant specializing in tech, social media trends, business, and entrepreneurship. Follow him on Twitter and LinkedIn.

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

digital marketing trends in 2020
Big DataExclusive

Big Data Is Shaping These Huge Digital Marketing Trends In 2020

8 Min Read
which JS framework is best
Big DataExclusiveProgramming

Which JS Framework Is Best For Big Data Development?

6 Min Read
big data supply chain management
Big Data

Big Data, Analytics, and the Changing Face of Supply Chain Management

5 Min Read
Automation Tools
Big DataBusiness IntelligenceData ManagementData Mining

3 Ways Automation Tools Use Big Data To Drive Business Growth

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?