Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: How To Build A High-Performing Data Analytics Platform In The Cloud
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > IT > Cloud Computing > How To Build A High-Performing Data Analytics Platform In The Cloud
AnalyticsBig DataCloud ComputingExclusive

How To Build A High-Performing Data Analytics Platform In The Cloud

Namita Awasthi
Namita Awasthi
5 Min Read
high performing data analytics in the cloud
Shutterstock Licensed Photo - By Bloomicon
SHARE

Moving Big Data to the cloud helps you scale limitlessly and offer analytic capabilities to your users on an anytime, anywhere basis. You can quickly increase capacity to deal with the exploding scope and volume of data. Not only that, cloud computing helps you offload costly infrastructure and data management overheads so that you can focus on your core business. And that?s the reason why many organizations have started migrating their Big Data workloads to the Cloud. As per a recent BI on Big Data Adoption survey by Kyvos, 54% companies are expected to fully move their Big Data infrastructure to cloud over the next 3 years.

Contents
Key Considerations for SuccessBuild your Big Data Analytics Cloud Platform: An ApproachIn Conclusion

However, just moving your Big Data to the cloud is not enough. To get real business benefits, you need build your big data analytics cloud platform such that it can provide insights to your business users as soon as they need them. And, for that you need to build a high-performing analytical environment that can handle huge volumes of data in the cloud, and deliver insights that are quick, reliable, and easily accessible.

Key Considerations for Success

There are several tools and technologies available today for cloud analytics and it is extremely important to choose a solution that can meet your organization?s growing requirements. Here is a list of parameters on which you should assess the available options before you make your choice.

  • Speed to Insights

Speed at which insights are delivered on Big Data is very important in shaping the success of your data initiatives. Since most analytic platforms slow down when the size of data increases, it is important to build an environment that delivers instant insights.

More Read

Should “Bob The Marketing Guy” Be Building Your Analytics?
The Data Lake Debate: Pro is Up First
WHOIS Lookup APIs and Domain Monitoring in AI-Driven Cybersecurity
The Connection Between Data Science And Business In Big Data
4 Key Ways Cannabis Marketers Can Use Big Data
  • Interactive Analysis on Big Data

Business users must be able to query massive volumes of data, ask any question, and get results in seconds. They should be able to slice and dice, roll up and down, and explore their data interactively so that they can get meaningful insights from it.

  • Ease of Use

Dependency on IT teams and data analysts to pull reports from Big Data makes it difficult for users to utilize their data for business decision-making. The analytical platform should enable self-service Big Data access to users across the organization.

  • Elasticity

As cloud provides native elasticity features, the analytical platform should also be able to scale up and down to leverage the elasticity of the cloud. This will help you manage costs and scale quickly to meet changing requirements.

Build your Big Data Analytics Cloud Platform: An Approach

If you want to build a high-performing Big Data Analytics platform in the cloud, start with assessing the expectations of the business users. Identify who all need access to the data, how quickly do they expect their insights, and what tools do they prefer to use for analytics. Most business users would rather use their existing tools such as Qlik, Tableau, Power BI, Excel, or others, instead of going through the pains of learning new technologies and adopting new tools. In fact, it would be ideal if they can access Big Data seamlessly without worrying about its size or location.

However, most analytical tools that perform well on smaller datasets slow down while handling Big Data. If you try to connect your analytical tools directly to massive data in the cloud, response times can go exceptionally high making analytics difficult.

This can be resolved by building an enterprise BI Consumption layer on your Big Data platform that enables your analytical tools to access to massive volumes of data instantly. The main purpose of this layer is to bridge the gap between your analytical tools and Big Data. It resides in the cloud and can easily scale up and down to meet varying analytical loads. Once this layer is in place, users can use any tool they like for Big Data analytics and as a result, adoption is high. This approach helps you build a Big Data Analytics platform that delivers analytics in cloud with high performance, unlimited scalability, and rapid elasticity.

In Conclusion

Moving big data to cloud is a big initiative that requires investment in terms of time, people, and processes. Therefore, it is important to build an end-to-end solution that not only takes care of data storage but also actual consumption of the data by the business users.

Share This Article
Facebook Pinterest LinkedIn
Share
ByNamita Awasthi
Follow:
Namita Awasthi is a business and content strategist who writes about technologies and innovations that business decision makers need to know about. She has over 15 years of experience in writing and works for Kyvos Insights, a leading BI on Big Data solution provider.

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Spotfire 4.0 is Socially Collaborative and Interactive

6 Min Read

A Fool and Their Data are Soon Parted

9 Min Read

Forbes: Big Data Needs to Earn Its Keep

1 Min Read

IBM – GIO Study Theme: Media and Content

0 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?