Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Entry Point: Change is a Constant
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Warehousing > Entry Point: Change is a Constant
Data Warehousing

Entry Point: Change is a Constant

DataQualityEdge
DataQualityEdge
5 Min Read
SHARE

How many times have you received bad data from an upstream ‘stable’ database environment for no reason what so ever?

1…
2…
10…
13…
76…

Never…?

How’s this for a reply… no environment is stable! PERIOD.

More Read

Data Management: Reaching Into the Cloud
Twitter Roundup of Last Week’s TDWI Conference
A Year On: The Promise of SAP HANA for Big Data Analytics (Part One)
Top 10 interesting companies in Data Management
A Closer Look at RDDs

Each and every data warehouse environment is subject to change, subject to growth, subject to budget constraints, and other external conditions (i.e., political changes). Their will always be change, THAT you cannot control.

Remember SOx. One recent example in Ontario is the Harmonized Sales Tax move. This means for those organizations tracking tax in their internal systems, they must make changes to their databases and systems to incorporate the HST and alter their PST and GST taxation collection and tracking in Ontario. This is a nice example of an externally forced-upon change. This particular impact will impact both Operational and Decision support systems.

Personal Experience:

The data files were coming in just fine from a source system that was considered stable (i.e., no data issues from them since project delivery).

Then one day, the volume dropped by more then 70% on file feeds received daily...


How many times have you received bad data from an upstream ‘stable’ database environment for no reason what so ever?

1…
2…
10…
13…
76…

Never…?

How’s this for a reply… no environment is stable! PERIOD.

Each and every data warehouse environment is subject to change, subject to growth, subject to budget constraints, and other external conditions (i.e., political changes). Their will always be change, THAT you cannot control.

Remember SOx. One recent example in Ontario is the Harmonized Sales Tax move. This means for those organizations tracking tax in their internal systems, they must make changes to their databases and systems to incorporate the HST and alter their PST and GST taxation collection and tracking in Ontario. This is a nice example of an externally forced-upon change. This particular impact will impact both Operational and Decision support systems.

Personal Experience:

The data files were coming in just fine from a source system that was considered stable (i.e., no data issues from them since project delivery).

Then one day, the volume dropped by more then 70% on file feeds received daily.

After some investigation the source system (System B) identified that their volumes had changed as well. They did not even know their data volume had decreased. The investigation was escalated to their source (system A), who identified that all the records where being sent to system B. There were no changes to System A, “more on that shortly.” Back to System B; they do not have the data. Open the source files and there the data was, the records that were missing were in the source files with blanks in the identifying fields.

A scheduled software (note scheduled) upgrade on System A, could not process French characters and inserted blanks in the initial fields and subsequent ID fields. So when System B arrived to pick up the record IDs it found nothing to insert.

A simple software upgrade that resulted in wasted time, money and missing data.

 

Ignore the potential for change and you will be left holding an empty bag. Never get comfortable.

Remember to inform all your upstreamers of how their changes may potentially become a critical impact to your environment.

Some of the most common forms of changes in systems are the result of the following items:

  • Data integration
  • Mergers and acquisitions
  • Politics, laws and regulations,
  • Software changes
  • Web interfaces (change of portals)
  • Hardware changes

I’m certain you may be able to add to this short list, and I welcome you to.

If you are someone making change, remember to practice proper Change Management techniques, a topic for future discussions.

TAGGED:changedata quality
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

data quality and role of analytics
Data Quality

Preserving Data Quality is Critical for Leveraging Analytics with Amazon PPC

8 Min Read

Are You Afraid Of Your Data Quality Solution?

4 Min Read
The Challenges and Solutions of Big Data Testing
Big DataData ManagementData QualitySoftware

The Challenges and Solutions of Big Data Testing

7 Min Read

Data Gazers

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?