Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Data Quality Project Selection
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Data Quality Project Selection
Uncategorized

Data Quality Project Selection

SteveSarsfield
SteveSarsfield
6 Min Read
SHARE

What if you have five data intensive projects that are all in need of your very valuable resources for improving data quality? How do you decide where to focus? The choice is not always clear. Management may be interested in accurate reporting from your data warehouse, but revenue may be at stake in other projects. So, just how do you decide where to start?

To aid in a choice between projects, it may help to plot your projects on a “Project Selection Quadrant” as I’ve shown here. The quadrant chart plots the difficulty of completing a project versus the value it brings to the organization.


Project Difficulty
To find the project on the X axis, you must understand how your existing system is being used; how various departments use it differently; and if there are special programs or procedures that impact the use of the data. To predict project length, you have to rely heavily on your understanding your organization’s goals and business drivers.

Some of the things that will affect project difficulty:
• Access to the data – do you have permission to get the data?
• Window of opportunity – how much time do you have between updates to work on the data
• Number …

More Read

Foreign Spies Make Recession Worse and Steal Part of Our Future
Data Driven Lingerie?
A Small Experiment with Twitter’s Language Detection Algorithm
A Brief History of Big Data Everyone Should Read
Ten examples of SOA at work, circa 2008


What if you have five data intensive projects that are all in need of your very valuable resources for improving data quality? How do you decide where to focus? The choice is not always clear. Management may be interested in accurate reporting from your data warehouse, but revenue may be at stake in other projects. So, just how do you decide where to start?

To aid in a choice between projects, it may help to plot your projects on a “Project Selection Quadrant” as I’ve shown here. The quadrant chart plots the difficulty of completing a project versus the value it brings to the organization.


Project Difficulty
To find the project on the X axis, you must understand how your existing system is being used; how various departments use it differently; and if there are special programs or procedures that impact the use of the data. To predict project length, you have to rely heavily on your understanding your organization’s goals and business drivers.

Some of the things that will affect project difficulty:
• Access to the data – do you have permission to get the data?
• Window of opportunity – how much time do you have between updates to work on the data
• Number of databases – more databases will increase complexity
• Languages and code pages – is it English or Kanji? Is it ASCII or EBCDIC? If you have mixed languages and code pages, you may have more work ahead of you
• Current state of data quality – The more non-standard your data is to begin with, the harder the task
• Volume of data – data standardization takes time and the more you have, the longer it’ll take
• Governance, Risk and Compliance mandates – is your access to the data stopped by regulation?

Project Value
For assessing project value (the Y axis), there is really one thing that you want to look at – money. It comes from your discussions with the business users around their ability to accomplish things like:
• being able to effectively reach/support customers
• call center performance
• inventory and holding costs
• exposure to risk such as being out of compliance with any regulations in your industry
• any business process that is inefficient because of data quality

The Quadrants
Now that you’ve assessed your projects, they will naturally fall into the following quadrants:

Lower left: The difficult and low value targets. If management is trying to get you to work on these, resist. You’ll never get anywhere with your enterprise-wide appeal by starting here.

Lower right
: These may be easy to complete, but if they have limited value, you should hold off until you have complete corporate buy-in for an enterprise-wide data quality initiative.

Upper left
: Working on high value targets that are hard complete will likely only give your company sticker shock when you show them the project plan. Or, they may run into major delays and be cancelled altogether. Again, proceed with caution. Make sure you have a few wins under your belt before you attempt.

Upper right
: Ah, low-hanging fruit. Projects that are easier to complete with high value are the best places to begin. As long as you document and promote the increase in value that you’ve delivered to the company, you should be able to leverage these wins into more responsibility and more access to great projects.

Keeping an eye on both the business aspect of the data, its value, and the technical difficulty in standardizing the data will help you decide where to go and how to make your business stronger. It will also ensure that you and your business co-workers to understand the business value of improving data quality within your projects.

Covering the world of data integration, data governance, and data quality from the perspective of an industry insider.

Link to original post

TAGGED:data quality
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data mining to find the right poly bag makers
Using Data Analytics to Choose the Best Poly Mailer Bags
Analytics Big Data Exclusive
data science importance of flexibility
Why Flexibility Defines the Future of Data Science
Big Data Exclusive
payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

data quality and quantity in artificial intelligence
Artificial IntelligenceBig DataData QualityExclusiveMachine Learning

What To Know About The Impact of Data Quality and Quantity In AI

8 Min Read
Big data mistakes to avoid
Big Data

6 Big Data Mistakes You Must Avoid At All Costs

8 Min Read

Sun Tzu and the Art of Data Quality

6 Min Read

Finding Data Quality

12 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?