Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Rethinking Big Data’s Usability
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Rethinking Big Data’s Usability
AnalyticsBig DataBusiness IntelligenceData Management

Rethinking Big Data’s Usability

Josh Knauer
Josh Knauer
6 Min Read
SHARE

The emergence of Big Data has forever changed the face of business. With so much information available, business decisions in areas like marketing and advertising have the potential to be informed by data, but still rarely are. This is due to a disconnect between available data analysis and how it’s relevant to an executive’s use case. Executives end up relying on others in their organization to pull the right data, run the right analysis and have data engineers and analysts draw the correct conclusions for complex business questions.

The emergence of Big Data has forever changed the face of business. With so much information available, business decisions in areas like marketing and advertising have the potential to be informed by data, but still rarely are. This is due to a disconnect between available data analysis and how it’s relevant to an executive’s use case. Executives end up relying on others in their organization to pull the right data, run the right analysis and have data engineers and analysts draw the correct conclusions for complex business questions. The greater the distance an executive has from the data itself, the more the promise of Big Data fails to live up to the hype.

Harnessing data’s power requires access to tools that deliver answers to our questions. A business person does not want to learn about data, nor do they want to learn how to use a tool. They just want answers. Despite the market full of business intelligence and data analytics products, not one is hitting the mark.

Take marketers, for example. In order to make informed decisions, they need to consider various consumer data such as media consumption habits, brand engagement on devices and buying habits. For each category, there are many datasets that need to be consulted. Getting over the first hurdle means knowing which datasets to consult, and this requires specialized skills and training. Next, data from multiple sources needs to be combined together and the proper algorithms applied to get to a numeric answer. Finally, the results need to be interpreted and visualized or presented in a way that others can understand and act on. Marketers should not have to be database experts, visual designers and statisticians just to get answers to their questions.

More Read

Is Text Analytics the Next Frontier for Big Data?
Our work attempts to predict patient response to a combination…
World Series Analytics
How Data Hoarding Is Costing Your Business
Naming and Classifying: Text Analysis Vs. Text Analytics

We must rethink the way data is engaged. The tools available today fail because they are cumbersome and complicated. Instead, we need tools with an ease threshold comparable to Google. If something is harder than running a Google search, we cannot expect a broad audience of business users to adopt it. And without broad adoption, Big Data will fail to make its true mark on the business world.

For mass business adoption, tools need to meet professionals in their current skillset, not require them to learn a whole new vernacular. The tools must proactively indicate to users which data points are relevant to their natural language question, and then put the data into context. To the end-user, a Google search is simple. But the interface is masking very sophisticated algorithms that keep the quality and relevance of the results displayed. A Google search also doesn’t require the user to type anything more than a term to generate relevant results.

This same ease of use, accuracy and relevancy needs to be available for Big Data. Indexing may be a common data term, but the likelihood of anyone other than a data scientist truly understanding its context is limited. Instead, information should be presented how people think in conversation with each other. For example, “according to voter registration data, Pittsburghers are 21 times more likely to vote Democrat compared to the rest of Pennsylvania” is much easier to comprehend than “Pittsburghers index higher for voting Democrat compared to the entire Pennsylvania population.”

In other words, data tools must offer human-centered access to data. An example of this is conversational interfaces, like Siri, Alexa, and Cortana, but enhanced to be very smart with advanced data. This integration of virtual assistant technology, artificial intelligence and data analysis is the future of the data industry, because it makes engaging Big Data quite simple. Rather than interacting via icons or click commands, as computers are structured to do, users can access the information needed by asking a standard question or command.

We are failing our peers if those who understand data don’t work to make it accessible to all. That means thinking of data, not the way a data scientist does but like an ordinary professional looking to better inform their decision-making process. Only when Big Data becomes truly usable in the hands of the entire business ecosystem, will we see the impact it can have on our world.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

decision management
AnalyticsBest PracticesBig DataBusiness IntelligenceData ManagementData MiningDecision ManagementModelingPredictive Analytics

The Role of Decision Requirements in the Analytical Life Cycle

4 Min Read

In Bringing Gold to Customers, Teradata Earns a Platinum

2 Min Read

Kapow Software harvests and virtualizes information and applications for business.

7 Min Read

Google and Amazon as Benchmarkers

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?