Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Online and offline become 1: a new era has begun (part 1)
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Online and offline become 1: a new era has begun (part 1)
Predictive Analytics

Online and offline become 1: a new era has begun (part 1)

SandroSaitta
SandroSaitta
4 Min Read
SHARE

I recently came across two interesting articles that are closely related to our Customer Online Targeting (COT) tool. Both are from Information Management. The first one, “Online Analytics in Action” by Roman Lenzen, deals with web data and how to manage this huge amount of information. The second one, “Bridging the Gap Between Online and Database Marketing” by David M. Raab focus on linking online with offline data at the customer/visitor level.

I recently came across two interesting articles that are closely related to our Customer Online Targeting (COT) tool. Both are from Information Management. The first one, “Online Analytics in Action” by Roman Lenzen, deals with web data and how to manage this huge amount of information. The second one, “Bridging the Gap Between Online and Database Marketing” by David M. Raab focus on linking online with offline data at the customer/visitor level.

Online Analytics in Action

More Read

Using Web 2.0 for Analytics 2.0
Predictive Analytics Could Minimize Underpayment Penalties By The IRS
Just as the media and businesses are coming to grips with Web…
This project brings together researchers from seven disciplines…
Smarter Traffic

The first interesting point, that we have also noticed at FinScore, is that online data are usually not integrated with other offline data. To enable true analytics, Lenzen defines three steps:

“First, the online data must be integrated. Second, it must be analyzed; and finally, the insights must be made actionable within all channels.”

Lenzen also lists four initial requirements. Whenever possible, I give examples using COT:

1. “Determine the online data that is available and develop links“. In COT, the link can be made at the customer level (when he is identified) or at the cookie level (when non identified or when the visitor is a prospect). This link is extremely important since this allows to have an Extended Customer Profile (as named in COT). This profile contains both offline (CRM) and online (behavioral) data about each user.

2. Preprocess online data. Although it may be huge, online data are still data. It is very important to aggregate the online raw data as soon as possible to reduce the disc space needed. With typical web logs, data aggregation can reduce data amount by a factor of ten. An important step is to find which data to aggregate, into which granularity level and on which time basis.

3. “Do not discount anonymous user data“. On most website, there are more anonymous visitors then identified ones. Working at the cookie level (as long as visitors don’t delete them) allows a targeting even for prospects. In COT, identified customer habits can be used to predict anonymous visitor behaviors (ads they are more likely to click, interests, etc.).

4. “Determine an effective and efficient way to capture and load the online data within one integrated environment“. COT produces recommendations (scores) that are delivered to the client ad server. In addition, extended customer profile (obtained in part due to web log aggregation) can be loaded back to the CRM or any data warehouse. This information can then be used by the company for 1-to-1 marketing or further data mining. The loop is thus closed.

The rest of the article deals with possible solutions with SAS, SPSS, as well as open source tools such as R, mySQL, etc. to put these steps into practice. In the next post, I will write about the second article by Raab. If you’re interested, you can read the full article: Online Analytics in Action.

Share/Bookmark


Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

“The term BI has been stretched and widened to encapsulate a lot of different techniques, tools and…”

3 Min Read

Using business rules to close the SOA knowledge gap

3 Min Read

Means and Proportions with two populations

7 Min Read

Merry Christmas

1 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?