Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Hadoop Ecosystem: HDFS, Yarn, Hive, Pig, HBase and Growing
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > The Hadoop Ecosystem: HDFS, Yarn, Hive, Pig, HBase and Growing
Uncategorized

The Hadoop Ecosystem: HDFS, Yarn, Hive, Pig, HBase and Growing

zygimantas
zygimantas
6 Min Read
SHARE

Hadoop is the leading open-source software framework developed for scalable, reliable and distributed computing. With the world producing data in the zettabyte range there is a growing need for cheap, scalable, reliable and fast computing to process and make sense of all of this data. The underlying technology for Hadoop framework was created by Google as there was no software in the market that fit Google needs. Indexing the web and analysing search patterns required deep and computationally extensive analytics that would help Google to improve their user behaviour algorithms.

Hadoop is the leading open-source software framework developed for scalable, reliable and distributed computing. With the world producing data in the zettabyte range there is a growing need for cheap, scalable, reliable and fast computing to process and make sense of all of this data. The underlying technology for Hadoop framework was created by Google as there was no software in the market that fit Google needs. Indexing the web and analysing search patterns required deep and computationally extensive analytics that would help Google to improve their user behaviour algorithms. Hadoop is built just for that as it runs on a large number of machines that share the workload to optimise performance. Moreover, Hadoop replicates the data throughout the machines ensuring that the processing of data will not be disrupted if one or multiple machines stop working. Hadoop has been extensively developed over the years adding new technologies and features to existing software creating the ecosystem we have today. 

HDFS – or Hadoop Distributed File System is the primary storage system used for Hadoop. It is the key tool for managing Big Data and supporting analytic applications in a scalable, cheap and rapid way. Hadoop is usually used on low-cost commodity machines, where server failures are fairly common. To accommodate a high failure environment the file system is designed to distribute data throughout different servers in different server racks making the data highly available. Moreover, when HDFS takes in data it breaks it down into smaller blocks that get assigned to different nodes in a cluster which allows for parallel processing, increasing the speed in which the data is managed.

Hadoop Yarn is a programming model for processing and generating large sets of data. Yarn is the successor of Hadoop MapReduce. The original MapReduce is no longer viable in today’s environment. MapReduce was created 10 years ago, as the size of data being created increased dramatically so did the time in which MapReduce could process the ever growing amounts of data, ranging from minutes to hours. Secondly, programing MapReduce jobs is a time consuming and complex task that requires extensive training. And lastly, MapReduce did not fit all business scenarios as it was created for the single purpose of indexing the web. Yarn provides many benefits over its predecessor. Yarn provides better scalability due to distributed life-cycle management and support for multiple MapReduce API’s in a single cluster. It allows for faster processing and coupled with the in-memory capabilities of other software such as Apache Spark it is comes close to real-time processing. Yarn also supports many frameworks eliminating the need for MapReduce and making it more flexible for different use cases.

More Read

5 Reasons Why I Won’t Build That For You (it’s not just because I said so)
Claiborne Community
Solving the MDM Problem is Not Easy.
Treat Your Data Like an Asset, Not an Inconvenience
Consider This: The Big Data Workout

Apache Hive is a data warehouse management and analytics system that is built for Hadoop. Hive was initially developed by Facebook, but soon after became an open-source project and is being used by many other companies ever since. Apache hive uses a SQL like scripting language called HiveQL that can convert queries to MapReduce, Apache Tez and Spark jobs.

Apache Pig is a platform for analysing large sets of data. It includes a high level scripting language called Pig Latin that automates a lot of the manual coding comparing it to using Java for MapReduce jobs. Apache Pig is somewhat similar to Apache Hive though some users say that it is easier to transition to Hive rather than Pig if you come from a RDBMS SQL background. However, both platforms have a place in the market. Hive is more optimised to run standard queries and is easier to pick up where as Pig is better for tasks that require more customisation.

Apache Hbase is a non-relational database that runs on top of HDFS. This schema-less database supports in-memory caching via block cache and bloom filters that provide near real-time access to large datasets, making it especially useful for sparse data which are common in many Big Data use cases. However, it is not a replacement for a relational database as it does not speak SQL, support cross record transactions or joins.

Hadoop has become the low cost industry standard ecosystem for securely analysing high volume data from a variety of enterprise sources. We specialise in helping organisations leverage this advanced stack to rapidly understand their data landscape to deliver faster and more insightful reporting, analytics and analysis.  Contact us for more details.

The post The Hadoop Ecosystem: HDFS, Yarn, Hive, Pig, HBase and growing… appeared first on Data To Value.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai and satelite technology
How Machine Learning Improves Satellite Object Tracking
Exclusive Machine Learning
Diverse Research Datasets
The 5 Best Platforms Offering the Most Diverse Research Datasets in 2026
Big Data Exclusive
macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Ethics and Fraud – From a Gray Area to Prison

7 Min Read
Image
Uncategorized

Stupid Analytics Gets Them Talking

4 Min Read

You don’t know what you don’t know; the other Socratic problem; joke

0 Min Read

Clustering the thoughts of Twitter Users

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?