Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Perfect Data and Other Data Quality Myths
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Perfect Data and Other Data Quality Myths
Uncategorized

Perfect Data and Other Data Quality Myths

EvanLevy
EvanLevy
5 Min Read
SHARE
Loch-ness-monster-photo

A recent client experience reminds me what I’ve always said about data quality: it isn’t the same as data perfection. After all, how could it be? A lot of people think that correcting data is a post-facto activity based on opinion and anecdotal problems. But it should be an entrenched process.

One drop of gasoline can pollute a thousand gallons of pure water. But it’s not the same with data. On the other hand the FDA says that a single worm found in 10,000 pounds of cereal is perfectly fine. (Jill says this is “apocryphal,” but you get my point.)

People forget that the definition of data quality is data that’s fit for purpose. It conforms to requirements. You only have to look back at the work of Philip Crosby and W. Edwards Demming to understand that quality is about conformance to requirements. We need to understand the variance between the data as it exists and its acceptability, not its perfection.

The reason data quality gets so much attention is when bad data gets in the way of getting the job done. If I want to send an e-mail to 10,000 customers and one customer’s zip code is unknown, it doesn’t prevent me from contacting the other 9999 customers. That can amount to what in . …

More Read

November 2009 Early Indications: Prediction Scorecard
Fight Hunger on April Food Day
Taking the Internet out of its current boundaries
Matt Cutts: Google Still Has Big Ideas
Why No Regulation of Offshoring: Untangling the Gap Between Rhetoric and Action

Loch-ness-monster-photo

A recent client experience reminds me what I’ve always said about data quality: it isn’t the same as data perfection. After all, how could it be? A lot of people think that correcting data is a post-facto activity based on opinion and anecdotal problems. But it should be an entrenched process.

One drop of gasoline can pollute a thousand gallons of pure water. But it’s not the same with data. On the other hand the FDA says that a single worm found in 10,000 pounds of cereal is perfectly fine. (Jill says this is “apocryphal,” but you get my point.)

People forget that the definition of data quality is data that’s fit for purpose. It conforms to requirements. You only have to look back at the work of Philip Crosby and W. Edwards Demming to understand that quality is about conformance to requirements. We need to understand the variance between the data as it exists and its acceptability, not its perfection.

The reason data quality gets so much attention is when bad data gets in the way of getting the job done. If I want to send an e-mail to 10,000 customers and one customer’s zip code is unknown, it doesn’t prevent me from contacting the other 9999 customers. That can amount to what in any CMO’s estimation is a very successful marketing campaign. The question should be: What data helps us get the job done?

Our client is a regional bank that has retained Baseline to work with its call center staff. Customer service reps (CSRs) have been frustrated that they get multiple records for the same customer. They had to jump through hoops to find the right data, often while the customer waited on the phone, or on-line. The problem wasn’t that the data was “bad”—it was that the CSRs could only use the customer’s phone number to look up the record. If the phone number was incorrect, the CSR can’t do her job. And as a result, her compensation suffers. So data quality is very important to her. And to the bank at large.

Users are all too accustomed to complaining about data. The goal of data quality should be continuous improvement, ensuring a process is available to fix data when it’s broken. If you want to address data quality, focus energy on the repair process. As long as your business is changing—and I hope it is—its data will continue to change. Data requirements, measurements, and the reference points for acceptability will keep changing too. If you’re involved in a data quality program, think of it as job security.

Link to original post

TAGGED:data quality
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

First Look – Quantivo

6 Min Read
Smart Data
Best PracticesBig DataData ManagementData QualityDecision ManagementPredictive AnalyticsRisk ManagementSocial Data

Can Smart Data Ensure Cybersecurity and Data Protection?

6 Min Read

#7: Here’s a thought…

7 Min Read

Who should be accountable for data quality?

11 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?