Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: 7 Ways to Avoid Errors In Your Data Pipeline
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > 7 Ways to Avoid Errors In Your Data Pipeline
Big DataExclusive

7 Ways to Avoid Errors In Your Data Pipeline

Discover 7 easy, actionable steps to ensure your data pipelines are error-free. Uncover the best practices to keep your data flow running smoothly and efficiently.

Dariia Herasymova
Dariia Herasymova
5 Min Read
data pipelines
Licensed Image from DepositPhotos - 12799710 | By Author chromatika2
SHARE

A data pipeline is a technical system that automates the flow of data from one source to another. While it has many benefits, an error in the pipeline can cause serious disruptions to your business. Thankfully, there are ways to prevent them and avoid this company wide disruption. Here are some of the best practices for preventing errors in your data pipeline:

Contents
1. Use Automated Testing2. Monitor Your Data Sources3. Check Your Data For Accuracy4. Create A Backup Plan5. Utilize Data Governance Policies6. Invest In Quality Tools7. Use Logging And AuditingFinal Thoughts

1. Use Automated Testing

Automated testing can help you identify and eliminate many potential data errors before they become an issue. These tests look for discrepancies between data sets and any unexpected changes in the flow of data. Automated testing can also help you identify and fix problems quickly before they become significant issues.

2. Monitor Your Data Sources

Data sources can be the most unpredictable part of a data pipeline. It’s essential to keep an eye on them and ensure they send valid data. For example, collect customer information from a satisfaction survey. You should check that the survey collects all of the data, including the customer’s name, email address, and other relevant data pieces. If you experience any unexpected changes or irregularities in your data sources, it’s best to investigate and address them immediately.

3. Check Your Data For Accuracy

Because the data you collect will be used to make company-wide decisions, staff must be diligent with checking for accuracy. Teams should double-check all data sources, ensure no data is omitted or incorrect, and conduct manual tests to ensure the information is accurate.

More Read

pearltrees, socializing and curating content on the web
Ethical Considerations with Data-Driven Employee Monitoring
How Small Businesses Can Use Big Data
How to Improve Data Visualization at Your Company?
When Do You need All the Data for Big Analytics?

Data accuracy can be managed manually or with automated tools.  Automated tools can help you quickly spot errors and fix them before they become an issue. When considering an automation tool, look for one that is reliable and easy to use.

4. Create A Backup Plan

No matter how much preparation this company does, there’s always a chance of an error. To protect against this possibility, it’s crucial to have a backup plan in place. This plan will help you quickly recover from a data pipeline error without too much disruption.

Creating a backup plan is essential, but it’s only effective if the team knows what to do in an emergency. Regular training sessions can help keep everyone up-to-date on the company’s contingency plans and familiar with new procedures.

5. Utilize Data Governance Policies

Data governance policies are essential for preventing errors in the data pipeline. These policies help ensure that everyone follows the same set of rules when collecting and handling data.

It’s essential to create these policies with all team members’ input and review them regularly. Data governance policies should also be communicated to all staff and enforced with appropriate consequences.

6. Invest In Quality Tools

Quality tools are essential for monitoring and managing data pipelines. Automation tools, such as ETL software, can help you quickly identify and fix errors before they become an issue. These tools also often offer real-time feedback to ensure that data is always accurate and up-to-date.

By investing in quality tools, you can quickly identify and resolve errors and avoid disruption to your data pipelines. Spending time researching and investing in the right tools can help ensure that your data pipeline is always running smoothly.

7. Use Logging And Auditing

Logging and auditing are essential for monitoring data pipelines. Logging can help you quickly identify any errors or irregularities, while auditing can ensure that the data is accurate and secure.

Logs should be regularly reviewed, and any anomalies should be investigated immediately. Auditing tools can also help to make sure that data is secure and compliant with industry standards. By using logs and auditing tools, teams can quickly identify and fix any issues before they become significant problems.

Final Thoughts

Data pipeline errors can be costly and disruptive, so it’s essential to take steps to prevent them. By following the tips above, you can keep your data pipelines running smoothly and ensure that the data is accurate and secure. Investing in quality tools, utilizing data governance policies, checking for accuracy, creating a backup plan, and using logging and auditing are all essential for managing data pipelines. With the right tools and practices in place, you can ensure that your data is always reliable and up-to-date.

TAGGED:backup planbig datadata pipelinesdata sources
Share This Article
Facebook Pinterest LinkedIn
Share
ByDariia Herasymova
Follow:
Dariia Herasymova is a Recruitment Team Lead at Devox Software. She hires software development teams for startups, small businesses, and enterprises. She carries out a full cycle of recruitment; creates job descriptions based on talks with clients, searches and interviews candidates, and onboards the newcomers. Dariia knows how to build HR and recruitment processes from scratch. She strives to find a person with appropriate technical and soft skills who will share the company's values. When she has free time, she writes articles on various outsourcing models for our blog.

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

social media customer service strategy
Big DataExclusive

Is Big Data Important In Your Social Media Customer Service Strategy?

8 Min Read

NPR’s radio series on Big Data

1 Min Read
big data and industry 4.0
Big DataExclusivePrivacySecurity

Big Data Challenges Of Industry 4.0 Worth Considering

7 Min Read

Hadoop pushes, pulls Big Data analytics into mainstream (Part Two)

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?