By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data science anayst
    Growing Demand for Data Science & Data Analyst Roles
    6 Min Read
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: The 6 Worst Market Research Mistakes #MRX
Share
Notification Show More
Latest News
ai in automotive industry
AI Is Changing the Automotive Industry Forever
Artificial Intelligence
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Market Research > The 6 Worst Market Research Mistakes #MRX
Market Research

The 6 Worst Market Research Mistakes #MRX

AnniePettit
Last updated: 2012/10/17 at 2:37 PM
AnniePettit
5 Min Read
SHARE
3d chart mistake

Sigh, not only are the colours horrid, this 3d pie chart completely misconstrues the values it is trying to represent. Would you have guessed the three slices are identical?

3d chart mistake

Sigh, not only are the colours horrid, this 3d pie chart completely misconstrues the values it is trying to represent. Would you have guessed the three slices are identical?

More Read

Market Research and Big Data: A Difficult Relationship

Market Research Agencies Can Thrive in the Big Data Era
Improvement Project for Services; Remember You’re Never Really Done
Unlocking the Potential of ‘Big Data’ in the Market Research industry
Market Research Bad Practice: If It Ain’t Illegal, It’s All Good

As much as we’d like to think, market research is not a commodity. Though anyone can technically carry out the processes that can be deemed to be market research, not everyone can carry out those same functions and actually be conducting valid and reliable market research.

The problem is that so many problems can and do crop up along the way. Unless you can 1) actually recognize that there is a problem and 2) have the skills to actually fix the problem, your problem will just compound itself. Here are the top problems that I see.

  1. Not starting with a research objective. If you don’t know the questions you are trying to answer, you will waste many hours wandering in circles, playing with numbers, and accomplishing absolutely nothing. Coming up with cool results does you no good if it doesn’t solve the problem you were initially trying to solve.
  2. Using insufficient sample sizes. Forget the fact that insufficient samples sizes won’t generate any statistically significant results. I’m not concerned with signficance here. I’m concerned with trying to solve major problems based on only 100 responses. How the heck are 100 responses reflective of any group of people, unless the target population is only 500 to begin with. How the heck can you analyze subgroups of men and women, or older and younger people, if you’re only starting with 100 people. Did you not anticipate wanting to look at subgroups of people?
  3. Being bound by statistical significance, or lack thereof.  We often forget about type 1 and type 2 errors. Any time you do statistical tests, some will be falsely significant and other will be falsely insignificant. What the means is that statistics will help guide you but they aren’t the be all and end all of what it important in  your dataset. You absolutely must depend on your brain to determine what the important results are.
  4. Generalizing beyond your sample. In its worst form, this means gathering results from 100 women and assuming the results will apply to men as well. Or, generalizing results from your subsample of 5 men to the entire male population. How about generalizing results from people who completely a two hour survey to people who’ve never answered a survey in their entire life. Again, what were you thinking? You  must realize ahead of time that you care about what men think or what non-robots would think.
  5. Creating something out of nothing. Surprise, surprise, the business world is indeed a publish or perish world. If you don’t publish surprising and interesting results in your research report, clients may be less likely to consider you as a vendor as you clearly don’t have the skills to find the surprising and interesting results. Alas, this philosophy should never lead you make a mountain out of a molehill simply so you have something cool to show your client. This is just another form of falsifying data. You will get caught. You will be horribly embarrassed.
  6. Focusing on entertaining, not educating. I’ll say it. Storytelling is a huge fad right now. If you don’t turn your research results into a story and delight and amaze your audience, your client may be hugely disappointed. But if your focus is on telling a pretty story instead of discovering whether there actually is a story, you are once again succumbing to falsifying data.

Remember, the research must come first. Decide on your research objective, build a great research methodology using the right sample sizes, the right scales, the right instruments, the right techniques. Analyze the data properly, thoughtfully, logically. If indeed there is a story worth telling, it will be done with integrity and validity. That’s the kind of story I want to hear.

 

TAGGED: market research, mistakes
AnniePettit October 17, 2012
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai in automotive industry
AI Is Changing the Automotive Industry Forever
Artificial Intelligence
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

Market Research and Big Data: A Difficult Relationship

19 Min Read

Market Research Agencies Can Thrive in the Big Data Era

6 Min Read

Improvement Project for Services; Remember You’re Never Really Done

8 Min Read

Unlocking the Potential of ‘Big Data’ in the Market Research industry

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?