Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: 4 Ways R Developers Are Solving Business Analytics Challenges
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Exclusive > 4 Ways R Developers Are Solving Business Analytics Challenges
Exclusive

4 Ways R Developers Are Solving Business Analytics Challenges

Rehan Ijaz
Rehan Ijaz
5 Min Read
SHARE

R developers have played a crucial role in developing applications predicated on big data. There are numerous fields that have benefited from their work. Healthcare, construction, law enforcement and academia are just a few of the countless sectors that have become dependent on applications developed by R programmers. However, business analytics may be the field that is most affected by their work.

Contents
Improving omnichannel marketing strategiesOptimizing customer service deliveryFraud preventionIdentifying employee and human resources concerns

There are a number of ways that R programmers develop applications that have helped improve business analytics and subsequently increase the effectiveness of most business models.

Improving omnichannel marketing strategies

Omni-channel marketing has become crucial to the success of most retailers. They have discovered that viewing online and brick-and-mortar retail distribution strategies as competitors rather than supplements have been a mistake. The most successful brands are merging the two, while companies like Sears, a former pioneer in omnichannel marketing that has since lost its way, are struggling to stave off bankruptcy.

R developers have helped these retailers integrate data from their online marketing strategies into their brick-and-mortar approaches. Nordstrom is one of the companies that has done this, which has explained why they are thriving as competitors struggle. A case study by HubSpot found that this approach lifted their ROI by 164% by utilizing data blending and other strategies.

More Read

data to excel in healthcare industry
Using Data to Excel in the Healthcare Industry
Why Are Organizations Focusing on Data Security?
The 5 Best Methods Utilized for Data Collection
Network Security Certifications to Combat Growing Data Breach Threats
Top Programming Languages For Data Developers In 2019

Optimizing customer service delivery

CustomerThink discussed the role that business analytics is playing in customer service. The most important way that it is influencing customer service is by segmenting behavioral data across different customer groups and tailoring their customer service strategies accordingly. Brands are collecting valuable data on millennials and baby boomers to see what their behavioral tendencies are. This has helped create more effective customer service approaches.

Some brands can use this data in more obvious ways, because they tend to have more homogenous customer profiles. Brands that primarily serve millennials can easily corporate their behavioral data. However, some brands have more diverse customer bases. They need to utilize this data in other ways. This usually involves adding additional dimensions to their data profiles.

Most conglomerates have different child brands and products that are targeted to specific demographics. They can segment their customer service departments according to these internal divisions.

This is one of the reasons that R is such a popular language for customer service analytics. It is a very deep level programming language that can handle multi-dimensional arrays. This means that it is a good language for developing applications that need to take a very nuanced look at customers.

Fraud prevention

Fraud is a very real concern that countless businesses face. Cyber fraud is especially worrisome. Over 60% of small businesses that are victims of a cyber security breach are forced to close their doors within six months.

While technology has created lots of new security threats to businesses of all sizes, it also is the best defense against a new generation of criminals. Business analytics has helped numerous companies improve their cyber security models.

This will significantly reduce the risks of online crime in the future. Companies with a strong online presence are most likely to benefit because they tend to attract the most attention from online criminals.

R developers are playing an increasingly important role in this regard. The R programming language is very adept at collecting real-time data since earlier generations were entirely predicated on RAM memory.

Identifying employee and human resources concerns

Human resources issues are a major cause of frustration for many companies. Fortunately, R developers have helped develop a number of applications that can alleviate them. These applications are able to track employee responses over the course of a year or more.

This can help organizations better understand the issues their employees and respond to them appropriately. This can help reduce turnover, which is a massive concern for most businesses.

Share This Article
Facebook Pinterest LinkedIn
Share
ByRehan Ijaz
Follow:
Rehan is an entrepreneur, business graduate, content strategist and editor overseeing contributed content at BigdataShowcase. He is passionate about writing stuff for startups. His areas of interest include digital business strategy and strategic decision making.

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

machine learning and contract management
ExclusiveMachine Learning

How Machine Learning And Contract Management Go Together

7 Min Read
KDD vs data mining
Big DataData MiningExclusive

Your Guide To Current Trends And Challenges In Data Mining

12 Min Read
call data collection and analytics
Data Collection

Savvy Companies Find Brilliant Ways To Benefit From Inbound Call Data

5 Min Read
instagram visibility
AnalyticsExclusive

Data Analytics Plays a Key Role in Improving Instagram Visibility

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?