Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
    data analytics for trademark registration
    Optimizing Trademark Registration with Data Analytics
    6 Min Read
    data analytics for finding zip codes
    Unlocking Zip Code Insights with Data Analytics
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Scorecards in PMML: A Primer
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Scorecards in PMML: A Primer
Business Intelligence

Scorecards in PMML: A Primer

MichaelZeller
MichaelZeller
8 Min Read
SHARE


Scorecards are extremely popular, since they provide a clear and effective to way to predict outcome for a variety of situations. By clear I mean that the logic behind the scores obtained via a scorecard can be easily understood and appreciated. Scorecards are effective for situations in which you want to predict the probability of someone or something being “bad” or “good”. These probabilities can then be readily used for decision making.

Scorecards, as any data mining model, contains a set of inputs fields which are used to predict a certain target value. This prediction can be seen as an assessment about a prospect, a customer, or a scenario for which an outcome is predicted based on historical data. In a scorecard, input fields, also referred to as characteristics (for example, “Age”), are broken down into attributes (for example, “20-29” and “30-39” age groups) with specific partial scores associated with them. These scores represent the influence of the input attributes on the target and are readily available for inspection. For example, a high partial score for a particular attribute could imply a heavy dependence of the target value on…



Scorecards are extremely popular, since they provide a clear and effective to way to predict outcome for a variety of situations. By clear I mean that the logic behind the scores obtained via a scorecard can be easily understood and appreciated. Scorecards are effective for situations in which you want to predict the probability of someone or something being “bad” or “good”. These probabilities can then be readily used for decision making.

Scorecards, as any data mining model, contains a set of inputs fields which are used to predict a certain target value. This prediction can be seen as an assessment about a prospect, a customer, or a scenario for which an outcome is predicted based on historical data. In a scorecard, input fields, also referred to as characteristics (for example, “Age”), are broken down into attributes (for example, “20-29” and “30-39” age groups) with specific partial scores associated with them. These scores represent the influence of the input attributes on the target and are readily available for inspection. For example, a high partial score for a particular attribute could imply a heavy dependence of the target value on that attribute. Partial scores are then summed up so that an overall score can be obtained for the target value (is it good? Or, is it bad?).

More Read

The State of Play in Automating Insurance Claims
Welcome to the Decision Support Channel for the Business…
BI and unstructured data continued…
Data Mining Can Be a Game Changer for Small Businesses
IBM Cloud Labs The world’s largest network of cloud…

ADAPA provides two different ways for scorecards to be represented. The first being through rules as described in the ADAPA Scorecard Guide and the second, as described in here, through the use of PMML.
Given that PMML does not offer a specific scorecard element, we use a RegressionModel element to implement different score allocation strategies and to compute the overall score. More specifically, we show in here how to represent different attributes (categorical or continuous … and complex) and their corresponding partial scores by the use of data transformations and built-in functions (see tutorial on data processing in PMML).

Score Allocation for Categorical Attributes

Typical score allocation for categorical attributes is done by associating a partial score with each attribute. In the PMML code shown below, input field “var1” may contain one of the following values (or attributes): “positive”, “negative”, and “neutral”, for which a partial score is defined (see table below for score allocation details). Note, that it also accounts for missing values. In the PMML example, the resulting partial score is assigned to derived variable “derivedVar1”.


Note that for categorical attributes, we simply use the MapValues element as described in to implement score allocation. If the input field consists of a large set of attributes, score allocation can be easily implemented by using the element TableLocator.

Score Allocation for Continuous Attributes

In the PMML code shown below, continuous input field “var2” has been discretized into three ranges or attributes: “less than 100”, “greater or equal to 100 and less than 200”, and “greater than 200” (see table for score allocation details). Note, that it also accounts for missing values. In the PMML example, the resulting partial score is assigned to derived variable “derivedVar2a”.


Note that for continuous attributes, we simply use the Discretize element to implement score allocation.

Score Allocation for Complex Attributes

If the attributes are complex, built-in functions can be used to implement score allocation. The PMML code shown below, uses several built-in functions to implement a complex score allocation (see table for details). As in the previous score allocation examples, this also accounts for missing values. In the PMML example, the resulting partial score is assigned to derived variable “derivedVar2b”.


Note that we are using built-in function IF-THEN-ELSE in conjunction with arithmetic operators to implement the necessary logic. Built-in functions in PMML are very powerful and can be used to represent a variety of complex score allocation strategies.

Computing the Overall Score

The score allocation examples shown in here include input attributes which are either related to “var1”, which is a categorical field, or to “var2”, which is continuous. For each attribute associated with these fields, a partial score is assigned to each derived field: “derivedVar1”, “derivedVar2a”, and “derivedVar2b” by using a PMML transformation.

Finally, as shown in the PMML code below, the sum of all partial scores is performed via a regression table for which all regression coefficients are set to 1. Note also that score allocation for all attributes are represented as transformations placed inside the LocalTransformations element.


A file containing the full PMML example shown here as well as data for model verification can be found in the PMML Examples page of the Zementis website.

There is a whole lot of information posted in different websites about Scorecards, PMML and ADAPA. If you want to learn more on how to represent data processing in PMML including different ways to perform score allocation for complex attributes, make sure to check our PMML Data Processing Primer.

For a more detailed list of ADAPA features, feel free to take a tour of ADAPA on the Cloud or check what is inside the ADAPA box. If you are still unsure about any of the features or would like to learn more about them and how ADAPA can represent scorecards using rules, drop us a note or give us a call. You can find our contact information in the contacts page of the Zementis website.

Comprehensive blog featuring topics related to predictive analytics with an emphasis on open standards, Predictive Model Markup Language (PMML), cloud computing, as well as the deployment and integration of predictive models in any business process.

Link to original post

TAGGED:decision managementpmml
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

crypto marketing
How a Crypto Marketing Agency Can Use AI to Create Powerful Native Advertising Strategies
Blockchain Exclusive Marketing
data driven insights
How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
Analytics Big Data Exclusive
image fx (37)
Boosting SMS Marketing Efficiency with AI Automation
Exclusive
pexels pavel danilyuk 8112119
Data Analytics Is Revolutionizing Medical Credentialing
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Thinking different with decision analysis

4 Min Read

Predictive Analytics in your iPhone

3 Min Read
data analytics in employee gift giving
Analytics

Using Data Analytics to Create a Great Employee Gifting Strategy

9 Min Read

Silverlink update

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?