By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data-driven image seo
    Data Analytics Helps Marketers Substantially Boost Image SEO
    8 Min Read
    construction analytics
    5 Benefits of Analytics to Manage Commercial Construction
    5 Min Read
    benefits of data analytics for financial industry
    Fascinating Changes Data Analytics Brings to Finance
    7 Min Read
    analyzing big data for its quality and value
    Use this Strategic Approach to Maximize Your Data’s Value
    6 Min Read
    data-driven seo for product pages
    6 Tips for Using Data Analytics for Product Page SEO
    11 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: BI Reports, Data Quality, and the Dreaded Design Review
Share
Notification Show More
Latest News
ai in software development
3 AI-Based Strategies to Develop Software in Uncertain Times
Software
ai in ppc advertising
5 Proven Tips for Utilizing AI with PPC Advertising in 2023
Artificial Intelligence
data-driven image seo
Data Analytics Helps Marketers Substantially Boost Image SEO
Analytics
ai in web design
5 Ways AI Technology Has Disrupted Website Development
Artificial Intelligence
cloud-centric companies using network relocation
Cloud-Centric Companies Discover Benefits & Pitfalls of Network Relocation
Cloud Computing
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > BI Reports, Data Quality, and the Dreaded Design Review
Business Intelligence

BI Reports, Data Quality, and the Dreaded Design Review

EvanLevy
Last updated: 2009/12/22 at 2:25 PM
EvanLevy
4 Min Read
SHARE
- Advertisement -
Business Man Asleep at Desk (Image courtesy shutterstock.com)

One of many discussions I heard over Thanksgiving turkey was, “How could the government have let the financial crisis happen?” To which the most frequent response was that regulators were asleep at the wheel. True or not, one could legitimately ask why we have problems with our business intelligence reports. The data is bad and the report is meaningless—who’s asleep at the wheel?

Everyone’s talking about the single version of the truth, but how often are our reports reviewed for accuracy? Several of our financial services clients demand that their BI reports are audited back to the source systems and that numbers are reconciled.

- Advertisement -

Unfortunately, this isn’t common practice across industries. When we work with new clients we ask about data reconciliation, but most of our new clients don’t have the methods or processes in place. It makes me wonder how engaged business users are in establishing audit and reconciliation rules for their BI capabilities. 

No, data perfection isn’t practical. But we should be able to guard against lost data and protect our users from formulas and equations that change. All too often these issues are thrown into the “post development” …

More Read

analyzing big data for its quality and value

Use this Strategic Approach to Maximize Your Data’s Value

7 Data Lineage Tool Tips For Preventing Human Error in Data Processing
Preserving Data Quality is Critical for Leveraging Analytics with Amazon PPC
Quality Control Tips for Data Collection with Drone Surveying
3 Huge Reasons that Data Integrity is Absolutely Essential

Business Man Asleep at Desk (Image courtesy shutterstock.com)

One of many discussions I heard over Thanksgiving turkey was, “How could the government have let the financial crisis happen?” To which the most frequent response was that regulators were asleep at the wheel. True or not, one could legitimately ask why we have problems with our business intelligence reports. The data is bad and the report is meaningless—who’s asleep at the wheel?

Everyone’s talking about the single version of the truth, but how often are our reports reviewed for accuracy? Several of our financial services clients demand that their BI reports are audited back to the source systems and that numbers are reconciled.

- Advertisement -

Unfortunately, this isn’t common practice across industries. When we work with new clients we ask about data reconciliation, but most of our new clients don’t have the methods or processes in place. It makes me wonder how engaged business users are in establishing audit and reconciliation rules for their BI capabilities. 

No, data perfection isn’t practical. But we should be able to guard against lost data and protect our users from formulas and equations that change. All too often these issues are thrown into the “post development” bucket or relegated to User Acceptance. By then reports aren’t always corrected and data isn’t always fixed.

A robust development process should ensure that data accuracy should be established and measured throughout development. This means that design reviews are necessary before, during, and after development. Design reviews ensure that the data is continually being processed accurately. Many believe that it’s ten or more times more expensive to fix broken code (or data) after development than it is during development. And, as we’ve all seen, often the data doesn’t get fixed at all.

When you’re building a report or delivering data, ask two questions: 1) whether the numbers reflect business expectations, and 2) if they reconcile back to their system of origin. Design review processes should be instituted (or, in many cases, re-instituted) to ensure functional accuracy long before the user ever sees the data on her desktop.

Link to original post

- Advertisement -
TAGGED: data quality
EvanLevy December 22, 2009
Share this Article
Facebook Twitter Pinterest LinkedIn
Share
- Advertisement -

Follow us on Facebook

Latest News

ai in software development
3 AI-Based Strategies to Develop Software in Uncertain Times
Software
ai in ppc advertising
5 Proven Tips for Utilizing AI with PPC Advertising in 2023
Artificial Intelligence
data-driven image seo
Data Analytics Helps Marketers Substantially Boost Image SEO
Analytics
ai in web design
5 Ways AI Technology Has Disrupted Website Development
Artificial Intelligence

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

analyzing big data for its quality and value
Big Data

Use this Strategic Approach to Maximize Your Data’s Value

6 Min Read
data lineage tool
Big Data

7 Data Lineage Tool Tips For Preventing Human Error in Data Processing

6 Min Read
data quality and role of analytics
Data Quality

Preserving Data Quality is Critical for Leveraging Analytics with Amazon PPC

8 Min Read
data collection with drone use
Data Collection

Quality Control Tips for Data Collection with Drone Surveying

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?