Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: BI Reports, Data Quality, and the Dreaded Design Review
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > BI Reports, Data Quality, and the Dreaded Design Review
Business Intelligence

BI Reports, Data Quality, and the Dreaded Design Review

EvanLevy
EvanLevy
4 Min Read
SHARE
Business Man Asleep at Desk (Image courtesy shutterstock.com)

One of many discussions I heard over Thanksgiving turkey was, “How could the government have let the financial crisis happen?” To which the most frequent response was that regulators were asleep at the wheel. True or not, one could legitimately ask why we have problems with our business intelligence reports. The data is bad and the report is meaningless—who’s asleep at the wheel?

Everyone’s talking about the single version of the truth, but how often are our reports reviewed for accuracy? Several of our financial services clients demand that their BI reports are audited back to the source systems and that numbers are reconciled.

Unfortunately, this isn’t common practice across industries. When we work with new clients we ask about data reconciliation, but most of our new clients don’t have the methods or processes in place. It makes me wonder how engaged business users are in establishing audit and reconciliation rules for their BI capabilities. 

No, data perfection isn’t practical. But we should be able to guard against lost data and protect our users from formulas and equations that change. All too often these issues are thrown into the “post development” …

More Read

Marketing
Defeat Common Hurdles to Make Big Data More Effective for Marketing
What Angry Birds Can Teach Us About Analytics
Avoiding Potential Snags in BI Initiatives
Are Major Optimization Opportunities Hiding in Your Business Data?
5 Tips to Stay Competitive as AI Technology Evolves

Business Man Asleep at Desk (Image courtesy shutterstock.com)

One of many discussions I heard over Thanksgiving turkey was, “How could the government have let the financial crisis happen?” To which the most frequent response was that regulators were asleep at the wheel. True or not, one could legitimately ask why we have problems with our business intelligence reports. The data is bad and the report is meaningless—who’s asleep at the wheel?

Everyone’s talking about the single version of the truth, but how often are our reports reviewed for accuracy? Several of our financial services clients demand that their BI reports are audited back to the source systems and that numbers are reconciled.

Unfortunately, this isn’t common practice across industries. When we work with new clients we ask about data reconciliation, but most of our new clients don’t have the methods or processes in place. It makes me wonder how engaged business users are in establishing audit and reconciliation rules for their BI capabilities. 

No, data perfection isn’t practical. But we should be able to guard against lost data and protect our users from formulas and equations that change. All too often these issues are thrown into the “post development” bucket or relegated to User Acceptance. By then reports aren’t always corrected and data isn’t always fixed.

A robust development process should ensure that data accuracy should be established and measured throughout development. This means that design reviews are necessary before, during, and after development. Design reviews ensure that the data is continually being processed accurately. Many believe that it’s ten or more times more expensive to fix broken code (or data) after development than it is during development. And, as we’ve all seen, often the data doesn’t get fixed at all.

When you’re building a report or delivering data, ask two questions: 1) whether the numbers reflect business expectations, and 2) if they reconcile back to their system of origin. Design review processes should be instituted (or, in many cases, re-instituted) to ensure functional accuracy long before the user ever sees the data on her desktop.

Link to original post

TAGGED:data quality
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

DQ-Tip: “…Go talk with the people using the data”

3 Min Read

Search User Interfaces and Data Quality

6 Min Read

10th Annual ECCMA Conference (ISO 8000 Data Quality Conference)

5 Min Read

Does Data Quality Matter in Social Media?

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?