Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Predictive Analytics, Business Intelligence, and Strategy Management
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Predictive Analytics, Business Intelligence, and Strategy Management
Business IntelligenceData MiningPredictive Analytics

Predictive Analytics, Business Intelligence, and Strategy Management

Editor SDC
Editor SDC
5 Min Read
SHARE

I was having a discussion with one of my clients this week and I thought he did a nice job summing up Predictive Analytics.

So in the World According to Reed (WOTR) – “queries answer questions, analytics creates questions.” My response was “and Strategy Management helps us to focus on which questions to answer.”

Reed Blalock is exactly right, traditional BI is about answering the questions we know. Analytics is really what we create with data mining – we look for nuances, things that might give us new insight into old problems. We use human intellect to explore and test. And yes, there is a little overlap. But what is really happening is that we have a different level of human interaction with the data.

BI is about history, analytics attempts to get us to think, to change, and idealistically to act.

More Read

limits of data mining and analysis
Data Mining and Analysis Aren’t Always the Answer
BI Implementations Must be Risk-Adjusted
Artificial Intelligence is Unlocking the Secret to Boosting Employee Retention
Seven Questions That Make Analytics Smarter
3 Spectacular Ways AI and Big Data Are Revolutionizing Cybersecurity

The danger with both of these is that they can be resource intensive. Neither tool, or mindset should be left to their own devices. What is needed is a filter to identify the priority and purpose. This is where strategy management and scorecarding comes into play. We have built out massive informational assets without understanding where, when, and how to use it. We have …



I was having a discussion with one of my clients this week and I thought he did a nice job summing up Predictive Analytics.

So in the World According to Reed (WOTR) – “queries answer questions, analytics creates questions.” My response was “and Strategy Management helps us to focus on which questions to answer.”

Reed Blalock is exactly right, traditional BI is about answering the questions we know. Analytics is really what we create with data mining – we look for nuances, things that might give us new insight into old problems. We use human intellect to explore and test. And yes, there is a little overlap. But what is really happening is that we have a different level of human interaction with the data.

BI is about history, analytics attempts to get us to think, to change, and idealistically to act.

The danger with both of these is that they can be resource intensive. Neither tool, or mindset should be left to their own devices. What is needed is a filter to identify the priority and purpose. This is where strategy management and scorecarding comes into play. We have built out massive informational assets without understanding where, when, and how to use it. We have pushed out enormous reporting structures and said “it’s all there, you can find anything you need” yet we scratch our heads when we see adoptions levels are low.

What we have typically not done all that well is build out that informational asset by how it helps us be more productive along product lines, divisions, sales region, etc. We have treated all dimensionality the same. Why, because it was easy. The BI tools are tremendous in how quickly you can add any and all dimensions.

“But because you can, doesn’t mean you should”

As we built out these data assets, we did not align them to performance themes. We have gotten better with some key themes, like supply chain management, and human resource management, but what about customer performance? We might look at sales performance, but that is a completely different lens than customer performance.

How do we determine which assets to start with… what assets do we need to be successful 3-5 years from now, or what are our biggest gaps to close today. Think about customer value, or employee satisfaction (and that doesn’t mean more HR assets). Think about your gaps in Strategy.

How often do we discuss…

  • Are our customers buying more or less frequently?
  • What are our best, and better customers doing?
  • What are the costs associated with serving our least profitable customers?
  • Where are our biggest holes in understanding?


Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive
warehousing in the age of big data
Top Challenges Of Product Warehousing In The Age Of Big Data
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

To Parse or Not To Parse

5 Min Read
AI helps create discord server bots
Artificial IntelligenceExclusive

AI-Driven Discord Bots Can Track Server Stats

4 Min Read

Improvement Project for Services; Remember You’re Never Really Done

8 Min Read
big data in business
Big Data

Why Investing in Data Is Crucial for Business Growth In 2022

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?