Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: When sharing isn’t a good idea
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > When sharing isn’t a good idea
Data Mining

When sharing isn’t a good idea

TimManns
TimManns
6 Min Read
SHARE

Ensemble models seem to be all the buzz at the moment. The NetFlix prize was won by a conglomerate of various models and approaches that each excelled in subsets of the data.

A number of data miners have presented findings based upon using simple ensembles that use the mean prediction of a number of models. I was surprised that some form of weighting isn’t commonly used, and that a simple mean average of multiple models could yield such an improvement in the global predictive power. It kinda reminds me of Gestalt theory phrase “The whole is greater than the sum of the parts.” It’s got me thinking, when it is best not to share predictive power. What if one model is the best? There is also a ton of considerations regarding scalability and trade-off between additional processing, added business value, and practicality (don’t mention random forests to me…), but we’re pretend those don’t exist for the purpose of this discussion 🙂

So this has got me thinking do ensembles work best in situations where there are clearly different sub-populations of customers. For example, Netflix is in the retail space, with many customers that rent the same popular blockbuster movies, and a moderate .. …



Ensemble models seem to be all the buzz at the moment. The NetFlix prize was won by a conglomerate of various models and approaches that each excelled in subsets of the data.

More Read

IBM Supercomputers Help Law Enforcement Gather, Analyze and Manage Crime Data
IBM and ILOG – Java, COBOL AND .Net
TechAmerica and Big Data in the Public Sector
What is the Biggest Challenge for Big Data?
Rmetrics presentations online

A number of data miners have presented findings based upon using simple ensembles that use the mean prediction of a number of models. I was surprised that some form of weighting isn’t commonly used, and that a simple mean average of multiple models could yield such an improvement in the global predictive power. It kinda reminds me of Gestalt theory phrase “The whole is greater than the sum of the parts.” It’s got me thinking, when it is best not to share predictive power. What if one model is the best? There is also a ton of considerations regarding scalability and trade-off between additional processing, added business value, and practicality (don’t mention random forests to me…), but we’re pretend those don’t exist for the purpose of this discussion 🙂

So this has got me thinking do ensembles work best in situations where there are clearly different sub-populations of customers. For example, Netflix is in the retail space, with many customers that rent the same popular blockbuster movies, and a moderate number of customers that rent rarer (or far more diverse, i.e., long tail) movies. I haven’t looked at the Netflix data, so I’m guessing that most customers don’t have hundreds of transactions, so generalising the correct behaviour of the masses to specific customers is important. Netflix data on any specific customer could be quite scant (in terms of rents/transactions). In other industries such as telecom, there are parallels; customers can also be differentiated by nature of communication (voice calls, sms calls, data consumption etc) just like types of movies. Telecom is mostly about quantity though (customer x used to make a lot of calls etc). More importantly there is a huge amount of data about each customer, often with many hundreds of transactions per customer. There is therefore relatively lesser reliance upon supporting behaviour of the masses (although it helps a lot) to understand any specific customer.

Following this logic, I’m thinking that ensembles are great at reducing the error of incorrectly applying insights derived from the generalised masses to those weirdos that rent obscure sci-fi movies! Combining models that explain sub-populations very well makes sense, but what if you don’t have many sub-populations (or can identify and model their behaviour with one model).

But you may shout “hey, what about the KDD Cup.” Yes, the recent KDD Cup challenge (anonymous featureless telecom data from Orange) was also a won by an ensemble of over a thousand models created by IBM Research. I’d like to have had some information about what the hundreds of columns respresented, and this might have helped better understand the Orange data and build more insightful and performing models. Aren’t ensemble models used in this way simply a brute force approach to over learn the data? I’d also really like to know how the performance of the winning entry tracks over the subsequent months for Orange.

Well, I haven’t had a lot of success in using ensemble models in the telecom data I work with, and I’m hoping it is more a reflection of the data than any ineptitude on my part. I’ve tried simply building multiple models on the entire dataset and averaging the scores, but this doesn’t generate much additional improvement (granted on already good models, and I already combine K-means and Neural Nets on the whole base). During my free time I’m just starting to try splitting the entire customer base into dozens of small sub-populations and building a Neural Net model on each, then combining the results and seeing if that yields an improvement. It’ll take a while.

Thoughts?

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive
warehousing in the age of big data
Top Challenges Of Product Warehousing In The Age Of Big Data
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

The Smarter Supply Chain of the Future. Read more on IBM’s…

1 Min Read

Trusting Google

3 Min Read

Three Critical Junctures

1 Min Read

Decision management and automated recommendations

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?