Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The General Theory of Data Quality
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > The General Theory of Data Quality
Uncategorized

The General Theory of Data Quality

JimHarris
JimHarris
9 Min Read
SHARE

In one of the famous 1905 Annus Mirabilis Papers On the Electrodynamics of Moving Bodies, Albert Einstein published what would later become known as his Special Theory of Relativity.

Contents
The Data-Information ContinuumThe Special Theory of Data QualityThe General Theory of Data QualityTheory vs. PracticeRelated Posts

This theory introduced the concept that space and time are interrelated entities forming a single continuum and that the passage of time can be a variable that could change for each specific observer.

One of the many brilliant insights of special relativity was that it could explain why different observers can make validly different observations – it was a scientifically justifiable matter of perspective. 

As Einstein’s Padawan Obi-Wan Kenobi would later explain in his remarkable 1983 “paper” on The Return of the Jedi:

More Read

Jeremiah Owyang Defends “Sponsored Conversations”
Google Already Knows What You’re Thinking
Perfect Survey Series: Planning & Executing
Is CRM the New Membership Management for NFPs?
Dr. Zagat’s

“You’re going to find that many of the truths we cling to depend greatly on our own point of view.”

Although the Special Theory of Relativity could explain the different perspectives of different observers, it could not explain the shared perspective of all observers.  Special relativity ignored a foundational force in classical physics – gravity.  So in 1916, Einstein used the force to incorporate a new perspective on gravity into what he called his General Theory of …

In one of the famous 1905 Annus Mirabilis Papers On the Electrodynamics of Moving Bodies, Albert Einstein published what would later become known as his Special Theory of Relativity.

This theory introduced the concept that space and time are interrelated entities forming a single continuum and that the passage of time can be a variable that could change for each specific observer.

One of the many brilliant insights of special relativity was that it could explain why different observers can make validly different observations – it was a scientifically justifiable matter of perspective. 

As Einstein’s Padawan Obi-Wan Kenobi would later explain in his remarkable 1983 “paper” on The Return of the Jedi:

“You’re going to find that many of the truths we cling to depend greatly on our own point of view.”

Although the Special Theory of Relativity could explain the different perspectives of different observers, it could not explain the shared perspective of all observers.  Special relativity ignored a foundational force in classical physics – gravity.  So in 1916, Einstein used the force to incorporate a new perspective on gravity into what he called his General Theory of Relativity.

 

The Data-Information Continuum

In my popular post The Data-Information Continuum, I explained that data and information are also interrelated entities forming a single continuum.  I used the Dragnet definition for data – it is “just the facts” collected as an abstract description of the real-world entities that the enterprise does business with (e.g. customers, vendors, suppliers).

I explained that although a common definition for data quality is fitness for the purpose of use, the common challenge is that data has multiple uses – each with its own fitness requirements.  Viewing each intended use as the information that is derived from data, I defined information as data in use or data in action. 

I went on to the explain that data’s quality must be objectively measured separate from its many uses and that information’s quality can only be subjectively measured according to its specific use.

 

The Special Theory of Data Quality

The majority of data quality initiatives are reactive projects launched in the aftermath of an event when poor data quality negatively impacted decision-critical information. 

Many of these projects end in failure.  Some fail because of lofty expectations or unmanaged scope creep.  Most fail because they are based on the flawed perspective that data quality problems can be permanently “fixed” by a one-time project as opposed to needing a sustained program.

Whenever an organization approaches data quality as a one-time project and not as a sustained program, they are accepting what I refer to as the Special Theory of Data Quality.

However, similar to the accuracy of special relativity for solving a narrowly defined problem, sometimes applications of the Special Theory of Data Quality can yield successful results – from a certain point of view. 

Tactical initiatives will often have a necessarily narrow focus.  Reactive data quality projects are sometimes driven by a business triage for the most critical data problems requiring near-term prioritization that simply can’t wait for the effects that would be caused by implementing a proactive strategic initiative (i.e. one that may have prevented the problems from happening).

One of the worst things that can happen to an organization is a successful data quality project – because it is almost always an implementation of information quality customized to the needs of the tactical initiative that provided its funding. 

Ultimately, this misperceived success simply delays an actual failure when one of the following happens:

  1. When the project is over, the team returns to their previous activities only to be forced into triage once again when the next inevitable crisis occurs where poor data quality negatively impacts decision-critical information.
  2. When either a new project (or later phase of the same project) attempts to enforce the information quality standards throughout the organization as if they were enterprise data quality standards.

 

The General Theory of Data Quality

True data quality standards are enterprise-wide standards providing an objective data foundation.  True information quality standards must always be customized to meet the subjective needs of a specific business process and/or initiative.

Both aspects of this shared perspective of quality must be incorporated into a single sustained program that enforces a consistent enterprise understanding of data, but that also provides the information necessary to support day-to-day operations.

Whenever an organization approaches data quality as a sustained program and not as a one-time project, they are accepting what I refer to as the General Theory of Data Quality.

Data governance provides the framework for crossing the special to general theoretical threshold necessary to evolve data quality from a project to a sustained program.  However, in this post, I want to remain focused on which theory an organization accepts because if you don’t accept the General Theory of Data Quality, you likely also don’t accept the crucial role that data governance plays in a data quality initiative – and in all fairness, data governance obviously involves much more than just data quality.

 

Theory vs. Practice

Even though I am an advocate for the General Theory of Data Quality, I also realize that no one works at a company called Perfect, Incorporated.  I would be lying if I said that I had not worked on more projects than programs, implemented more reactive data cleansing than proactive defect prevention, or that I have never championed a “single version of the truth.”

Therefore, my career has more often exemplified the Special Theory of Data Quality.  Or perhaps my career has exemplified what could be referred to as the General Practice of Data Quality?

What theory of data quality does your organization accept?  Which one do you personally accept? 

More importantly, what does your organization actually practice when it comes to data quality?

 

Related Posts

The Data-Information Continuum

Hyperactive Data Quality (Second Edition)

Hyperactive Data Quality (First Edition)

Data Governance and Data Quality

Schrödinger’s Data Quality

Link to original post

TAGGED:data quality
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Microwavable Data Quality

4 Min Read
data quality and quantity in artificial intelligence
Artificial IntelligenceBig DataData QualityExclusiveMachine Learning

What To Know About The Impact of Data Quality and Quantity In AI

8 Min Read

Which came first, the Data Quality Tool or the Business Need?

8 Min Read

#10: Here’s a thought…

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?