Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: First Look – Angoss 7
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > First Look – Angoss 7
Business IntelligenceData Mining

First Look – Angoss 7

JamesTaylor
JamesTaylor
6 Min Read
SHARE

Angoss has just released a new version of their data mining and predictive analytics software, version 7.0. Key themes for 7 were:

  • Optimization
  • Mining enhancements like data weighting, in-database analytics, new statistics
  • Support for more complex IT environments
  • Usability

Angoss has long supported the development of strategies or decision trees – models that define the relevant customer segments for a population and then assign treatments to those segments. The new optimization wizard allows miners to specify a linear objective function and constraints (risk, profit, bad debt limits etc) and then assigns optimized treatments to selected nodes in a strategy or decision tree. This function is in addition to a more rules-based approach where the rules for assigning treatments to customer segments are specified manually. Users previously exported the definition of a tree, ran it through an external optimizer and then put it back. This design-time optimization is now supported completely within Angoss.

Version 7.0 also makes data weighting available across the board – in all models, in creation of …

More Read

From the Midfield to the Top
AI For Video Editing Software: Do The Benefits Outweigh The Risks?
First Look – Opera Solutions
Will Artificial Intelligence Render Human Transcriptionists Obsolete?
Social Engineering — Hacking by Asking


Copyright © 2009 James Taylor. Visit the original article at First Look – Angoss 7.

Angoss has just released a new version of their data mining and predictive analytics software, version 7.0. Key themes for 7 were:

  • Optimization
  • Mining enhancements like data weighting, in-database analytics, new statistics
  • Support for more complex IT environments
  • Usability

Angoss has long supported the development of strategies or decision trees – models that define the relevant customer segments for a population and then assign treatments to those segments. The new optimization wizard allows miners to specify a linear objective function and constraints (risk, profit, bad debt limits etc) and then assigns optimized treatments to selected nodes in a strategy or decision tree. This function is in addition to a more rules-based approach where the rules for assigning treatments to customer segments are specified manually. Users previously exported the definition of a tree, ran it through an external optimizer and then put it back. This design-time optimization is now supported completely within Angoss.

Version 7.0 also makes data weighting available across the board – in all models, in creation of training data sets, data profiling, building trees etc. Users can use a wizard to create a weighting function or import a weight field with their data. This is a big deal for risk customers who often want to weight certain data more heavily. For instance, with the recent changes in the market, many want to weight data from recent periods differently from older historical data.

There is a growing demand for in-database analytics from the Angoss customer base. In addition some customers don’t like moving data from one location to another to create models as this creates data silos. Angoss 7.0 offers a new connection so that data can be sourced directly from databases. In addition, the model creation routines can be run in-database. A fairly generic engine has been developed and certified with Netezza and SQL Server already. They have kept this engine fairly generic to make it portable while recognizing that this means they can’t necessarily take full advantage of different platforms.

On the usability front they have redesigned the dataset partitioning wizard to give more information and better visualization of the partitions, added undo in various modeling tasks, added PDF generation for reporting and improved decision tree printing with scaling and page break management. In addition new dataset and model analysis statistics are available and the modeling server is now supported on Linux, Vista, Windows Server, XP, AIX and Solaris.

Finally 7.0 has added more model export formats. PMML, SAS code, and generic XML are now supported for all the models they support (decision trees, strategy trees, logistic and linear regression, MLN, Cluster and Scorecard). SPSS code, Java, SQL, text for reporting are also offered for decision trees and increasingly for strategy trees and scorecards. They are working to ensure that most model types can be exported in to a wider range of deployment languages. They see a particular growth in demand for PMML, as do I, and have more and more users adopting PMML to move models into production environments such as Business Rules Management Systems.

All in all some nice new features. I was particularly glad to see more support for PMML, making production deployment easier, and the direct database connection as these reduce the impedance between modeling and operational decisioning.


Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

“Does Business Intelligence Require Intelligent Business?” by George M. Tomko

9 Min Read

Analyzing Twitter

3 Min Read

5 Lessons Social CRM can Learn from CRM

8 Min Read

Gartner BI Summit 2012: The yin and yang of business and IT on the agenda

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?