Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: First Look – Angoss 7
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > First Look – Angoss 7
Business IntelligenceData Mining

First Look – Angoss 7

JamesTaylor
JamesTaylor
6 Min Read
SHARE

Angoss has just released a new version of their data mining and predictive analytics software, version 7.0. Key themes for 7 were:

  • Optimization
  • Mining enhancements like data weighting, in-database analytics, new statistics
  • Support for more complex IT environments
  • Usability

Angoss has long supported the development of strategies or decision trees – models that define the relevant customer segments for a population and then assign treatments to those segments. The new optimization wizard allows miners to specify a linear objective function and constraints (risk, profit, bad debt limits etc) and then assigns optimized treatments to selected nodes in a strategy or decision tree. This function is in addition to a more rules-based approach where the rules for assigning treatments to customer segments are specified manually. Users previously exported the definition of a tree, ran it through an external optimizer and then put it back. This design-time optimization is now supported completely within Angoss.

Version 7.0 also makes data weighting available across the board – in all models, in creation of …

More Read

The Web’s Seven Key Channels for 2011
MasterCard Applies Big Data to Help Retailers Achieve Better Results
Text Analytics for Telecommunications – Part 2
Cloud-Based BI Dramatically Improves Collaboration
Cloud ERP – Efficient, Innovative, or Both?


Copyright © 2009 James Taylor. Visit the original article at First Look – Angoss 7.

Angoss has just released a new version of their data mining and predictive analytics software, version 7.0. Key themes for 7 were:

  • Optimization
  • Mining enhancements like data weighting, in-database analytics, new statistics
  • Support for more complex IT environments
  • Usability

Angoss has long supported the development of strategies or decision trees – models that define the relevant customer segments for a population and then assign treatments to those segments. The new optimization wizard allows miners to specify a linear objective function and constraints (risk, profit, bad debt limits etc) and then assigns optimized treatments to selected nodes in a strategy or decision tree. This function is in addition to a more rules-based approach where the rules for assigning treatments to customer segments are specified manually. Users previously exported the definition of a tree, ran it through an external optimizer and then put it back. This design-time optimization is now supported completely within Angoss.

Version 7.0 also makes data weighting available across the board – in all models, in creation of training data sets, data profiling, building trees etc. Users can use a wizard to create a weighting function or import a weight field with their data. This is a big deal for risk customers who often want to weight certain data more heavily. For instance, with the recent changes in the market, many want to weight data from recent periods differently from older historical data.

There is a growing demand for in-database analytics from the Angoss customer base. In addition some customers don’t like moving data from one location to another to create models as this creates data silos. Angoss 7.0 offers a new connection so that data can be sourced directly from databases. In addition, the model creation routines can be run in-database. A fairly generic engine has been developed and certified with Netezza and SQL Server already. They have kept this engine fairly generic to make it portable while recognizing that this means they can’t necessarily take full advantage of different platforms.

On the usability front they have redesigned the dataset partitioning wizard to give more information and better visualization of the partitions, added undo in various modeling tasks, added PDF generation for reporting and improved decision tree printing with scaling and page break management. In addition new dataset and model analysis statistics are available and the modeling server is now supported on Linux, Vista, Windows Server, XP, AIX and Solaris.

Finally 7.0 has added more model export formats. PMML, SAS code, and generic XML are now supported for all the models they support (decision trees, strategy trees, logistic and linear regression, MLN, Cluster and Scorecard). SPSS code, Java, SQL, text for reporting are also offered for decision trees and increasingly for strategy trees and scorecards. They are working to ensure that most model types can be exported in to a wider range of deployment languages. They see a particular growth in demand for PMML, as do I, and have more and more users adopting PMML to move models into production environments such as Business Rules Management Systems.

All in all some nice new features. I was particularly glad to see more support for PMML, making production deployment easier, and the direct database connection as these reduce the impedance between modeling and operational decisioning.


Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

The Global Billboard Advertising Statistics and Dynamics

5 Min Read

Blame it on PR

1 Min Read

What does Google know about you?

5 Min Read

Ways CRM Adoption Creates Seamless Revenue Making Opportunities

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?