Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: First Look – Angoss 7
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > First Look – Angoss 7
Business IntelligenceData Mining

First Look – Angoss 7

JamesTaylor
JamesTaylor
6 Min Read
SHARE

Angoss has just released a new version of their data mining and predictive analytics software, version 7.0. Key themes for 7 were:

  • Optimization
  • Mining enhancements like data weighting, in-database analytics, new statistics
  • Support for more complex IT environments
  • Usability

Angoss has long supported the development of strategies or decision trees – models that define the relevant customer segments for a population and then assign treatments to those segments. The new optimization wizard allows miners to specify a linear objective function and constraints (risk, profit, bad debt limits etc) and then assigns optimized treatments to selected nodes in a strategy or decision tree. This function is in addition to a more rules-based approach where the rules for assigning treatments to customer segments are specified manually. Users previously exported the definition of a tree, ran it through an external optimizer and then put it back. This design-time optimization is now supported completely within Angoss.

Version 7.0 also makes data weighting available across the board – in all models, in creation of …

More Read

use data to increase customer engagement
How To Use Data To Increase Customer Engagement On Your Website
University of Connecticut Alumni
Social CRM: Take the Leap of Faith
Redefining Logistics Services through IT Innovation
Highlights from Teradata Partners 2010


Copyright © 2009 James Taylor. Visit the original article at First Look – Angoss 7.

Angoss has just released a new version of their data mining and predictive analytics software, version 7.0. Key themes for 7 were:

  • Optimization
  • Mining enhancements like data weighting, in-database analytics, new statistics
  • Support for more complex IT environments
  • Usability

Angoss has long supported the development of strategies or decision trees – models that define the relevant customer segments for a population and then assign treatments to those segments. The new optimization wizard allows miners to specify a linear objective function and constraints (risk, profit, bad debt limits etc) and then assigns optimized treatments to selected nodes in a strategy or decision tree. This function is in addition to a more rules-based approach where the rules for assigning treatments to customer segments are specified manually. Users previously exported the definition of a tree, ran it through an external optimizer and then put it back. This design-time optimization is now supported completely within Angoss.

Version 7.0 also makes data weighting available across the board – in all models, in creation of training data sets, data profiling, building trees etc. Users can use a wizard to create a weighting function or import a weight field with their data. This is a big deal for risk customers who often want to weight certain data more heavily. For instance, with the recent changes in the market, many want to weight data from recent periods differently from older historical data.

There is a growing demand for in-database analytics from the Angoss customer base. In addition some customers don’t like moving data from one location to another to create models as this creates data silos. Angoss 7.0 offers a new connection so that data can be sourced directly from databases. In addition, the model creation routines can be run in-database. A fairly generic engine has been developed and certified with Netezza and SQL Server already. They have kept this engine fairly generic to make it portable while recognizing that this means they can’t necessarily take full advantage of different platforms.

On the usability front they have redesigned the dataset partitioning wizard to give more information and better visualization of the partitions, added undo in various modeling tasks, added PDF generation for reporting and improved decision tree printing with scaling and page break management. In addition new dataset and model analysis statistics are available and the modeling server is now supported on Linux, Vista, Windows Server, XP, AIX and Solaris.

Finally 7.0 has added more model export formats. PMML, SAS code, and generic XML are now supported for all the models they support (decision trees, strategy trees, logistic and linear regression, MLN, Cluster and Scorecard). SPSS code, Java, SQL, text for reporting are also offered for decision trees and increasingly for strategy trees and scorecards. They are working to ensure that most model types can be exported in to a wider range of deployment languages. They see a particular growth in demand for PMML, as do I, and have more and more users adopting PMML to move models into production environments such as Business Rules Management Systems.

All in all some nice new features. I was particularly glad to see more support for PMML, making production deployment easier, and the direct database connection as these reduce the impedance between modeling and operational decisioning.


Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive
julia taubitz vn5s g5spky unsplash
Benefits of AI in Nursing Education Amid Medicaid Cuts
Artificial Intelligence Exclusive News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Friends Don’t Let Friends Overpay for BI

5 Min Read

WHAT WILL CHANGE EVERYTHING? “What game-changing…

1 Min Read

Google Experimenting with Social Search

5 Min Read

IBM – GIO Study Theme: Media and Content

0 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?