Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Graph Databases and the Future of Large-Scale Knowledge Management
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Graph Databases and the Future of Large-Scale Knowledge Management
Uncategorized

Graph Databases and the Future of Large-Scale Knowledge Management

TonyBain
TonyBain
3 Min Read
SHARE

Los Alamos National LaboratoryImage via Wikipedia

Todd Hoff has posted a link to a Los Alamos National Lab presentation on Graph Databases. In this paper they provide a revisit on the classic RDBMS vs Graph database debate.

The Relational Database hasn’t maintained its dominance out of dumb luck. Instead, the RDBMS has consistently outperformed while providing the most general use capability of all the variety of platforms that have been available. Many other approaches have been tried; often, these have provided better object model integration (OODBMS) or better data model representation. But when the rubber has hit the road they have failed on one or more of the key staples of a DBMS – performance, scalability, security, reliability, recoverability and ease of use.

Right now there seems to be more focus and traction than ever before to get it right. Graph databases are interesting and clearly have value in solving the hierarchal abstraction problem currently encountered when modeling such structures in the RDBMS. In other aspects they do share some similarities with the hybrid DHT’s. I think a mix of the best of several approaches will be something interesting (of course it will have to perform …

More Read

Micro Economies of Attention
Rebranding and the Customer Experience
Open Calais at the New York Semantic Web Meetup
Worthy Data Quality Whitepapers (Part 1)
Data Integration: Hand-coding Using ETL Tools Part 2

Los Alamos National LaboratoryImage via Wikipedia

Todd Hoff has posted a link to a Los Alamos National Lab presentation on Graph Databases. In this paper they provide a revisit on the classic RDBMS vs Graph database debate.

The Relational Database hasn’t maintained its dominance out of dumb luck. Instead, the RDBMS has consistently outperformed while providing the most general use capability of all the variety of platforms that have been available. Many other approaches have been tried; often, these have provided better object model integration (OODBMS) or better data model representation. But when the rubber has hit the road they have failed on one or more of the key staples of a DBMS – performance, scalability, security, reliability, recoverability and ease of use.

Right now there seems to be more focus and traction than ever before to get it right. Graph databases are interesting and clearly have value in solving the hierarchal abstraction problem currently encountered when modeling such structures in the RDBMS. In other aspects they do share some similarities with the hybrid DHT’s. I think a mix of the best of several approaches will be something interesting (of course it will have to perform extremely well and have great developer support).

It’s such an interesting time to be in data management.

Reblog this post [with Zemanta]


Link to original postInnovations in information management

TAGGED:rdbmsrelational database
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data mining to find the right poly bag makers
Using Data Analytics to Choose the Best Poly Mailer Bags
Analytics Big Data Exclusive
data science importance of flexibility
Why Flexibility Defines the Future of Data Science
Big Data Exclusive
payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

#3: Here’s a thought…

7 Min Read

Is the RDBMS doomed (yada yada yada) ?

6 Min Read

The Total Cost of Big Data Performance [VIDEO]

1 Min Read

#14: Here’s a thought…

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?