By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data Analytics instagram stories
    Data Analytics Helps Marketers Make the Most of Instagram Stories
    15 Min Read
    analyst,women,looking,at,kpi,data,on,computer,screen
    What to Know Before Recruiting an Analyst to Handle Company Data
    6 Min Read
    AI analytics
    AI-Based Analytics Are Changing the Future of Credit Cards
    6 Min Read
    data overload showing data analytics
    How Does Next-Gen SIEM Prevent Data Overload For Security Analysts?
    8 Min Read
    hire a marketing agency with a background in data analytics
    5 Reasons to Hire a Marketing Agency that Knows Data Analytics
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: The Problem with the Relational Database (Part 1 ) –The Deployment Model
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Warehousing > The Problem with the Relational Database (Part 1 ) –The Deployment Model
Data Warehousing

The Problem with the Relational Database (Part 1 ) –The Deployment Model

TonyBain
Last updated: 2009/05/24 at 7:36 AM
TonyBain
6 Min Read
SHARE

This is the first detailed post in a series I am doing focusing on the issues that exist today with the Relational Database.  This first post is on the deployment model.  It could be argued that this isn’t directly related to the “relational database” but rather is an implementation model problem.  I disagree with this as many characteristics of the relational database lead to the deployment model described (we will explore in later posts).

For most of my career I have been involved with the enterprise and the databases in this environment.  Over the years I have seen the volume of databases increase dramatically in line with an increase of data centric applications.  This has led to even medium sized organizations often having dozens of physical database servers.   Enterprise organizations often have hundreds of database servers, occasionally thousands of them.  The volume does vary heavily by database platform however, SQL Server typically suffering the most sprawl out of all the mainstream enterprise relational database platforms.

Deployment

Problems happen when DBA’s try to co-locate independant databases on a single server.  The problems are due to the dynamic nature of databases in terms…

More Read

What is Data Pipeline A detailed explaination

What is Data Pipeline? A Detailed Explanation

Understanding ETL Tools as a Data-Centric Organization
Differentiating Between Data Lakes and Data Warehouses
How Will The Cloud Impact Data Warehousing Technologies?
Big Data Is More Prevalent in Daily Life Than You Might Think

This is the first detailed post in a series I am doing focusing on the issues that exist today with the Relational Database.  This first post is on the deployment model.  It could be argued that this isn’t directly related to the “relational database” but rather is an implementation model problem.  I disagree with this as many characteristics of the relational database lead to the deployment model described (we will explore in later posts).

For most of my career I have been involved with the enterprise and the databases in this environment.  Over the years I have seen the volume of databases increase dramatically in line with an increase of data centric applications.  This has led to even medium sized organizations often having dozens of physical database servers.   Enterprise organizations often have hundreds of database servers, occasionally thousands of them.  The volume does vary heavily by database platform however, SQL Server typically suffering the most sprawl out of all the mainstream enterprise relational database platforms.

Deployment

Problems happen when DBA’s try to co-locate independant databases on a single server.  The problems are due to the dynamic nature of databases in terms of data volume and dynamic nature of query load.  This dynamic nature makes managing capacity a complicated and time consuming task.  When relational databases share resources you risk a small number of intensive database queries causing concurrent impact to a wider group of other queries.  Because of this, typically small numbers of databases share the same servers.  On average for SQL Server around a 10:1 database to server ratio is seen in the enterprise.

The brokenness of this model is pretty easy to spot.  Firstly, resource inefficiency and ineffective distribution is a clear problem.  While I am generalizing somewhat, an organization with 100 database servers often could have 70% of those servers vastly underutilized, 20% of those servers effectively used and 10% of those servers highly over utilized with users suffering from poor performance, “bottlenecks”, as a result.

Utilization 

With this deployment model it isn’t possible to take the unused “resources” (CPU, Memory, I/O bandwidth) from elsewhere in the organization and re-apply it to where needed (even with downtime, let alone in real time).  Instead new infrastructure investment is made to continually add new resource capacity for the bottlenecked databases.

A relational database is capped by the limits of the server on which it currently sits.  A DBA monitors the server trying to keep current query demands as optimal as possible to avoid premature bottlenecking, and continually planning to stay one step ahead of database requirements growth.  This is a costly process and one often not helped by the unpredictability of the relational database (which we will discuss later).  Multiply this need across the hundreds of servers described and you can imagine it is a significant contributor of the cost of ownership.

When you reach the limits possible on a single server many database platforms have few practical options available for further scalability (such as distributed scalability for reasons again we will address in a later post in this series).  Too often organizations with multi-million $ servers are being forced to split workloads, move real time operations to batch operations, replicate data for offline processing purposes and mandate specific times when users can run particular intensive functions.  Again, all this manual fiddling becomes a management nightmare and significant overhead when you multiple it out.

This issue in isolation can potentially be addressed through technologies such as virtualization.  While virtualization is yet to make major impact on the way in which production databases are deployed in the enterprise, this may change in the future.  However as we delve further into the problems associated with the relational database, we will see this is not the only issue that we face taking this technology forward.

Related articles by Zemanta
  • Is the Relational Database Doomed? (readwriteweb.com)


Link to original post

TonyBain May 24, 2009
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

smart home data
7 Mind-Blowing Ways Smart Homes Use Data to Save Your Money
Big Data
ai low code frameworks
AI Can Help Accelerate Development with Low-Code Frameworks
Artificial Intelligence
data Analytics instagram stories
Data Analytics Helps Marketers Make the Most of Instagram Stories
Analytics
data breaches
How Hospital Security Breaches Devastate Local Communities
Policy and Governance

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

What is Data Pipeline A detailed explaination
Big Data

What is Data Pipeline? A Detailed Explanation

8 Min Read
etl for data-driven businesses
Big Data

Understanding ETL Tools as a Data-Centric Organization

8 Min Read
data lake vs data warehouse
Data Lake

Differentiating Between Data Lakes and Data Warehouses

7 Min Read
moving to the cloud
Big DataCloud ComputingData WarehousingExclusive

How Will The Cloud Impact Data Warehousing Technologies?

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?