Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Tips for the KDD challenge :)
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Tips for the KDD challenge :)
Business IntelligenceData Mining

Tips for the KDD challenge :)

TimManns
TimManns
5 Min Read
SHARE

I recently heard about the KDD challenge this year. Its a telco based challenge to build churn, cross-sell, and up-sell propensity models using the supplied train and test data.

For more info see;
http://www.kddcup-orange.com/index.php

I am not able to download the data at work (security / download limits), so I might have to try this at home. I haven’t even seen the data yet. I’m hoping its transactional cdr’s and not in some summarised form (which it sounds like it is).

I don’t have a lot of free time so I might not get around to submitting an entry, but if I do these are some of the data preparation steps and issues I’d consider;

More Read

Using Data
3 Pitfalls to Avoid When Using Data to Make Decisions
The GenIQ Model Modeling and Data Mining Software
Understanding Social Personas
Best Cybersecurity Practices for Companies Using AI
AI-Driven SEO is Becoming Essential for Modern Marketing

– handle outliers
If the data is real-world then you can guarantee that some values will be at least a thousand times bigger than anything else. Log might not work, so try trimmed mean or frequency binning as a method to remove outliers.

– missing values
The KDD guide suggests that missing or undetermined values were converted into zero. Consider changing this. Many algorithms will treat zero very differently from a null. You might get better results by treating these zero’s as nulls.

– percentage comparisons
If a customer can make a voice or sms call…


I recently heard about the KDD challenge this year. Its a telco based challenge to build churn, cross-sell, and up-sell propensity models using the supplied train and test data.

For more info see;
http://www.kddcup-orange.com/index.php

I am not able to download the data at work (security / download limits), so I might have to try this at home. I haven’t even seen the data yet. I’m hoping its transactional cdr’s and not in some summarised form (which it sounds like it is).

I don’t have a lot of free time so I might not get around to submitting an entry, but if I do these are some of the data preparation steps and issues I’d consider;

– handle outliers
If the data is real-world then you can guarantee that some values will be at least a thousand times bigger than anything else. Log might not work, so try trimmed mean or frequency binning as a method to remove outliers.

– missing values
The KDD guide suggests that missing or undetermined values were converted into zero. Consider changing this. Many algorithms will treat zero very differently from a null. You might get better results by treating these zero’s as nulls.

– percentage comparisons
If a customer can make a voice or sms call, what’s the percentage between them? (eg 30% voice vs 70% sms calls). If only voice calls, then consider splitting by time of day or peak vs offpeak as percentages. The use of percentages helps remove differences of scale between high and low quantity customers. If telephony usage covers a number of days or weeks, then consider a similar metric that shows increased or decreased usage over time.

– social networking analysis
If the data is raw transactional cdr’s (call detail records) then give a lot of consideration do performing a basic social networking analysis. Even if all you can manage is to identify a circle of friends for each customer, then this may have a big impact upon identification of high churn individuals or up-sell opportunities.

– not all churn is equal
Rank customers by usage and scale the rank to a zero (low) to 1.0 score (high rank). No telco should still be treating every churn as a equal loss. Its not! The loss of a highly valuable customer (high rank) is worse than a low spend customer (low rank). Develop a model to handle this and argue your reasons for why treating all churn the same is a fool’s folly. This is difficult if you have no spend information or history of usage over multiple billing cycles.

Hope this helps

Good luck everyone!

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

The importance of feasibility studies in business intelligence

17 Min Read

Responding to a Follower’s Question: Why Keep Data Replication to a Minimum?

4 Min Read

A little math humor, and achieving clarity in explaining solutions

2 Min Read

How BI and Data Analytics Professionals Used Twitter in July

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?