Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
    data analytics for trademark registration
    Optimizing Trademark Registration with Data Analytics
    6 Min Read
    data analytics for finding zip codes
    Unlocking Zip Code Insights with Data Analytics
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: You’re So Vain, You Probably Think Data Quality Is About You
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > You’re So Vain, You Probably Think Data Quality Is About You
Uncategorized

You’re So Vain, You Probably Think Data Quality Is About You

JimHarris
JimHarris
5 Min Read
SHARE

Don’t you?

“Data Quality is an IT issue because information is stored in databases and applications that they manage. Therefore, if there are problems with the data, then IT is responsible for cleaning up their own mess.”

“Data Quality is a Business issue because information is created by business processes and users that they manage. Therefore, if there are problems with the data, then the Business is responsible for cleaning up their own mess.”

In response to these common viewpoints (channeling the poet Walt Whitman), I sound my barbaric yawp over the roofs of the world:

“Data Quality is not an IT issue. Data Quality is not a Business issue. Data Quality is everyone’s issue.”

Unsuccessful data quality projects are most often characterized by the Business meeting independently to define the requirements and IT meeting independently to write the specifications.  Typically, IT then follows the all too common mantra of “code it, test it, implement it into production, and declare victory” that leaves the Business frustrated with the resulting “solution.”

Successful data quality projects are driven by an executive management mandate for the Business and …

More Read

Cut Costs, Improve Experiences & Retain Customers
My Thoughts on Social Media for Press Release PR
Detroit’s Tech Renaissance Enhanced by Infrastructure Development
Perfect Tango: Social Media and Smart Phones
What to keep in our heads?

Don’t you?

“Data Quality is an IT issue because information is stored in databases and applications that they manage. Therefore, if there are problems with the data, then IT is responsible for cleaning up their own mess.”

“Data Quality is a Business issue because information is created by business processes and users that they manage. Therefore, if there are problems with the data, then the Business is responsible for cleaning up their own mess.”

In response to these common viewpoints (channeling the poet Walt Whitman), I sound my barbaric yawp over the roofs of the world:

“Data Quality is not an IT issue. Data Quality is not a Business issue. Data Quality is everyone’s issue.”

Unsuccessful data quality projects are most often characterized by the Business meeting independently to define the requirements and IT meeting independently to write the specifications.  Typically, IT then follows the all too common mantra of “code it, test it, implement it into production, and declare victory” that leaves the Business frustrated with the resulting “solution.”

Successful data quality projects are driven by an executive management mandate for the Business and IT to forge an ongoing and iterative collaboration throughout the entire project. The Business usually owns the data and understands its meaning and use in the day to day operation of the enterprise and must partner with IT in defining the necessary data quality standards and processes.

Here are some recommendations for fostering collaboration on your data quality project:

  • Provide Leadership – not only does the project require an executive sponsor to provide oversight and arbitrate any issues of organization politics, but the Business and IT must each designate a team leader for the initiative.  Choose these leaders wisely.  The best choice is not necessarily those with the most seniority or authority.  You must choose leaders who know how to listen well, foster open communication without bias, seek mutual understanding on difficult issues, and truly believe it is the people involved that make projects successful.  Your team leaders should also collectively meet with the executive sponsor on a regular basis in order to demonstrate to the entire project team that collaboration is an imperative to be taken seriously.

  • Formalize the Relationship – consider creating a service level agreement (SLA) where the Business views IT as a supplier and IT views the Business as a customer.  However, there is no need to get the lawyers involved.  My point is that this internal strategic partnership should be viewed no differently than an external one.  Remember that you are formalizing a relationship based on mutual trust and cooperation.

  • Share Ideas – foster an environment in which a diversity of viewpoints is freely shared without prejudice.  For example, the Business often has practical insight on application development tasks, and IT often has a pragmatic view about Business processes.  Consider including everyone as optional invitees to meetings.  You may be pleasantly surprised at how often people not only attend but also make meaningful contributions.  Remember that you are all in this together.

Data quality is not about you.  Data quality is about us.

I believe in us. 

Don’t you?

Link to original post

TAGGED:data quality
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

langgraph and genai
LangGraph Orchestrator Agents: Streamlining AI Workflow Automation
Artificial Intelligence Exclusive
ai fitness app
Will AI Replace Personal Trainers? A Data-Driven Look at the Future of Fitness Careers
Artificial Intelligence Big Data Exclusive
crypto marketing
How a Crypto Marketing Agency Can Use AI to Create Powerful Native Advertising Strategies
Blockchain Exclusive Marketing
data driven insights
How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

data quality
Big Data

Can Business Automation Solve Your Data Quality Problems?

6 Min Read

Poor Quality Data Sucks

9 Min Read
Big Data Maturity
AnalyticsBest PracticesBig DataBusiness IntelligenceCloud ComputingData ManagementData QualityExclusiveIT

CIOs Still Face Challenges to Reaching Big Data Maturity

10 Min Read

#11: Here’s a thought…

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?