Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Not MDM, Not Data Governance: Data Management.
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Not MDM, Not Data Governance: Data Management.
Business Intelligence

Not MDM, Not Data Governance: Data Management.

EvanLevy
EvanLevy
3 Min Read
SHARE
Duncecap
photo by garybirnie

Has everyone forgotten database development fundamentals?

In the hubbub of MDM and data governance, everyone’s lost track of the necessity of data standards and practices. All too often when my team and I get involved with a data warehouse review or BI scorecard project, we confront inconsistent column names in tables, meaningless table names, and different representations of the same database object. It’s as though the concepts of naming conventions and value standards never existed.

And now the master data millennium has begun! Every Tom, Dick, and Harry in the software world is espousing the benefits of their software to support MDM. “We can store your reference list!” they say. “We can ensure that all values conform to the same rules!” “Look, every application tied to this database will use the same names!”

Unfortunately this isn’t master data management. It’s what people should have been doing all along, and it’s establishing data standards. It’s called data management.

More Read

The Elephant and the Cheetah: Episode 2 in the “Potholes of BI” Series
AI Could Change DUI Terms for Future Turo Insurance Policies
Why BI Development is Different
Building Competitive Advantage through New Data
Redefining Business Intelligence: Don’t play the game, change the game!

It’s not sexy, it’s not business alignment, and it doesn’t require a lot of meetings. It’s not data governance. Instead, it’s the day-to-day management of detailed data, including the dirty wor…

Duncecap
photo by garybirnie

Has everyone forgotten database development fundamentals?

In the hubbub of MDM and data governance, everyone’s lost track of the necessity of data standards and practices. All too often when my team and I get involved with a data warehouse review or BI scorecard project, we confront inconsistent column names in tables, meaningless table names, and different representations of the same database object. It’s as though the concepts of naming conventions and value standards never existed.

And now the master data millennium has begun! Every Tom, Dick, and Harry in the software world is espousing the benefits of their software to support MDM. “We can store your reference list!” they say. “We can ensure that all values conform to the same rules!” “Look, every application tied to this database will use the same names!”

Unfortunately this isn’t master data management. It’s what people should have been doing all along, and it’s establishing data standards. It’s called data management.

It’s not sexy, it’s not business alignment, and it doesn’t require a lot of meetings. It’s not data governance. Instead, it’s the day-to-day management of detailed data, including the dirty work of establishing standards. Standardizing terms, values, and definitions means that as we move data around and between systems it’s consistent and meaningful. This is Information Technology 101. You can’t go to IT 301—jeez, you can’t graduate!—without data management. It’s just one of those fundamentals.

Link to original post

TAGGED:data management
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive
warehousing in the age of big data
Top Challenges Of Product Warehousing In The Age Of Big Data
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

use drop tables for your sql server
SQL

Big Data Strategies Hinge on Using Drop Tables in SQL Servers

15 Min Read
benefits of data lakes
Big DataData LakeExclusive

The Business And Technological Benefits Of Data Lakes

6 Min Read

5 Ways Cloud ‘Supercharges’ Enterprise Initiatives

3 Min Read
data server management
Big Data

Server Management Best Practices for Data-Driven Organizations

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?